Properties

Label 2-2352-1.1-c3-0-41
Degree $2$
Conductor $2352$
Sign $-1$
Analytic cond. $138.772$
Root an. cond. $11.7801$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 19.8·5-s + 9·9-s − 23.9·11-s − 87.3·13-s + 59.6·15-s + 5.63·17-s + 64.8·19-s + 25.5·23-s + 270.·25-s − 27·27-s + 60.3·29-s − 122.·31-s + 71.8·33-s − 56.1·37-s + 262.·39-s + 299.·41-s + 501.·43-s − 179.·45-s + 305.·47-s − 16.9·51-s − 375.·53-s + 476.·55-s − 194.·57-s − 627.·59-s − 3.75·61-s + 1.73e3·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.77·5-s + 0.333·9-s − 0.656·11-s − 1.86·13-s + 1.02·15-s + 0.0804·17-s + 0.783·19-s + 0.232·23-s + 2.16·25-s − 0.192·27-s + 0.386·29-s − 0.710·31-s + 0.378·33-s − 0.249·37-s + 1.07·39-s + 1.14·41-s + 1.77·43-s − 0.593·45-s + 0.948·47-s − 0.0464·51-s − 0.972·53-s + 1.16·55-s − 0.452·57-s − 1.38·59-s − 0.00788·61-s + 3.31·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2352\)    =    \(2^{4} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(138.772\)
Root analytic conductor: \(11.7801\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2352,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
7 \( 1 \)
good5 \( 1 + 19.8T + 125T^{2} \)
11 \( 1 + 23.9T + 1.33e3T^{2} \)
13 \( 1 + 87.3T + 2.19e3T^{2} \)
17 \( 1 - 5.63T + 4.91e3T^{2} \)
19 \( 1 - 64.8T + 6.85e3T^{2} \)
23 \( 1 - 25.5T + 1.21e4T^{2} \)
29 \( 1 - 60.3T + 2.43e4T^{2} \)
31 \( 1 + 122.T + 2.97e4T^{2} \)
37 \( 1 + 56.1T + 5.06e4T^{2} \)
41 \( 1 - 299.T + 6.89e4T^{2} \)
43 \( 1 - 501.T + 7.95e4T^{2} \)
47 \( 1 - 305.T + 1.03e5T^{2} \)
53 \( 1 + 375.T + 1.48e5T^{2} \)
59 \( 1 + 627.T + 2.05e5T^{2} \)
61 \( 1 + 3.75T + 2.26e5T^{2} \)
67 \( 1 - 813.T + 3.00e5T^{2} \)
71 \( 1 + 165.T + 3.57e5T^{2} \)
73 \( 1 + 619.T + 3.89e5T^{2} \)
79 \( 1 - 138.T + 4.93e5T^{2} \)
83 \( 1 - 621.T + 5.71e5T^{2} \)
89 \( 1 + 285.T + 7.04e5T^{2} \)
97 \( 1 - 603.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.898997975686862013606797065162, −7.49687571464462253156407366739, −7.05283319900711838563717376269, −5.77658190782031829464222694122, −4.88246375787487243494738098897, −4.40423799531124633245909996196, −3.36403122522750713576301559803, −2.47201365552535200657278568105, −0.790406109945933608839055154648, 0, 0.790406109945933608839055154648, 2.47201365552535200657278568105, 3.36403122522750713576301559803, 4.40423799531124633245909996196, 4.88246375787487243494738098897, 5.77658190782031829464222694122, 7.05283319900711838563717376269, 7.49687571464462253156407366739, 7.898997975686862013606797065162

Graph of the $Z$-function along the critical line