Properties

Degree 4
Conductor $ 2^{8} \cdot 3^{2} \cdot 7^{4} $
Sign $1$
Motivic weight 1
Primitive no
Self-dual yes
Analytic rank 0

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 6·11-s + 4·13-s − 4·19-s − 6·23-s + 5·25-s − 27-s + 12·29-s + 8·31-s − 6·33-s − 2·37-s + 4·39-s + 24·41-s + 8·43-s + 12·47-s + 6·53-s − 4·57-s + 10·61-s + 8·67-s − 6·69-s − 12·71-s + 10·73-s + 5·75-s − 4·79-s − 81-s + 24·83-s + 12·87-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.80·11-s + 1.10·13-s − 0.917·19-s − 1.25·23-s + 25-s − 0.192·27-s + 2.22·29-s + 1.43·31-s − 1.04·33-s − 0.328·37-s + 0.640·39-s + 3.74·41-s + 1.21·43-s + 1.75·47-s + 0.824·53-s − 0.529·57-s + 1.28·61-s + 0.977·67-s − 0.722·69-s − 1.42·71-s + 1.17·73-s + 0.577·75-s − 0.450·79-s − 1/9·81-s + 2.63·83-s + 1.28·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(5531904\)    =    \(2^{8} \cdot 3^{2} \cdot 7^{4}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  induced by $\chi_{2352} (1, \cdot )$
primitive  :  no
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((4,\ 5531904,\ (\ :1/2, 1/2),\ 1)\)
\(L(1)\)  \(\approx\)  \(3.263724401\)
\(L(\frac12)\)  \(\approx\)  \(3.263724401\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + b_p T^2 - a_p p T^3 + p^2 T^4 \]with $b_p = a_p^2 - a_{p^2}$. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 3.
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - T + T^{2} \)
7 \( 1 \)
good5$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 4 T - 3 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 2 T - 33 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 12 T + 97 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 6 T - 17 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 10 T + 39 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 8 T - 3 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 12 T + 55 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.948570264024871620121846425338, −8.778935401036831239947267251023, −8.373679238947412289545268438251, −8.017069253397462394286008874360, −7.83923337769409244194363015835, −7.43304609625792039376836339982, −6.73037548610876755722401835656, −6.58070181055153680044381197078, −5.93615149394874140145709010498, −5.75848343351756164234287376954, −5.32447292644377262542449593788, −4.65574677400007537791932302968, −4.24858645066785721866275906937, −4.10081317745311599115166427115, −3.37804046707988641401349354688, −2.64498024173241659152332272215, −2.55499019634426510586029306901, −2.27278853436506697571150202001, −1.04903925782933709581693766877, −0.71040944456387151011724551109, 0.71040944456387151011724551109, 1.04903925782933709581693766877, 2.27278853436506697571150202001, 2.55499019634426510586029306901, 2.64498024173241659152332272215, 3.37804046707988641401349354688, 4.10081317745311599115166427115, 4.24858645066785721866275906937, 4.65574677400007537791932302968, 5.32447292644377262542449593788, 5.75848343351756164234287376954, 5.93615149394874140145709010498, 6.58070181055153680044381197078, 6.73037548610876755722401835656, 7.43304609625792039376836339982, 7.83923337769409244194363015835, 8.017069253397462394286008874360, 8.373679238947412289545268438251, 8.778935401036831239947267251023, 8.948570264024871620121846425338

Graph of the $Z$-function along the critical line