# Properties

 Degree $2$ Conductor $2352$ Sign $-0.900 + 0.435i$ Motivic weight $1$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−0.5 − 0.866i)3-s + (1.70 − 2.95i)5-s + (−0.499 + 0.866i)9-s + (2.41 + 4.18i)11-s − 1.41·13-s − 3.41·15-s + (−3.12 − 5.40i)17-s + (−0.585 + 1.01i)19-s + (−0.414 + 0.717i)23-s + (−3.32 − 5.76i)25-s + 0.999·27-s − 8.48·29-s + (−5.41 − 9.37i)31-s + (2.41 − 4.18i)33-s + (4.82 − 8.36i)37-s + ⋯
 L(s)  = 1 + (−0.288 − 0.499i)3-s + (0.763 − 1.32i)5-s + (−0.166 + 0.288i)9-s + (0.727 + 1.26i)11-s − 0.392·13-s − 0.881·15-s + (−0.757 − 1.31i)17-s + (−0.134 + 0.232i)19-s + (−0.0863 + 0.149i)23-s + (−0.665 − 1.15i)25-s + 0.192·27-s − 1.57·29-s + (−0.972 − 1.68i)31-s + (0.420 − 0.727i)33-s + (0.793 − 1.37i)37-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 + 0.435i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.900 + 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$2352$$    =    $$2^{4} \cdot 3 \cdot 7^{2}$$ Sign: $-0.900 + 0.435i$ Motivic weight: $$1$$ Character: $\chi_{2352} (961, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 2352,\ (\ :1/2),\ -0.900 + 0.435i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$1.238113653$$ $$L(\frac12)$$ $$\approx$$ $$1.238113653$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1 + (0.5 + 0.866i)T$$
7 $$1$$
good5 $$1 + (-1.70 + 2.95i)T + (-2.5 - 4.33i)T^{2}$$
11 $$1 + (-2.41 - 4.18i)T + (-5.5 + 9.52i)T^{2}$$
13 $$1 + 1.41T + 13T^{2}$$
17 $$1 + (3.12 + 5.40i)T + (-8.5 + 14.7i)T^{2}$$
19 $$1 + (0.585 - 1.01i)T + (-9.5 - 16.4i)T^{2}$$
23 $$1 + (0.414 - 0.717i)T + (-11.5 - 19.9i)T^{2}$$
29 $$1 + 8.48T + 29T^{2}$$
31 $$1 + (5.41 + 9.37i)T + (-15.5 + 26.8i)T^{2}$$
37 $$1 + (-4.82 + 8.36i)T + (-18.5 - 32.0i)T^{2}$$
41 $$1 - 3.41T + 41T^{2}$$
43 $$1 - 8T + 43T^{2}$$
47 $$1 + (0.585 - 1.01i)T + (-23.5 - 40.7i)T^{2}$$
53 $$1 + (4.65 + 8.06i)T + (-26.5 + 45.8i)T^{2}$$
59 $$1 + (5.41 + 9.37i)T + (-29.5 + 51.0i)T^{2}$$
61 $$1 + (2.94 - 5.10i)T + (-30.5 - 52.8i)T^{2}$$
67 $$1 + (4 + 6.92i)T + (-33.5 + 58.0i)T^{2}$$
71 $$1 + 4.82T + 71T^{2}$$
73 $$1 + (-1.53 - 2.65i)T + (-36.5 + 63.2i)T^{2}$$
79 $$1 + (6.82 - 11.8i)T + (-39.5 - 68.4i)T^{2}$$
83 $$1 + 7.31T + 83T^{2}$$
89 $$1 + (-7.36 + 12.7i)T + (-44.5 - 77.0i)T^{2}$$
97 $$1 - 16.2T + 97T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−8.932389493341205737205929694597, −7.63589739649530108831281401941, −7.30039774233655610312432900340, −6.18213052107709928568859641325, −5.53071345208376988329340464057, −4.72415859287628441558232217898, −4.06784138651864694687367080439, −2.29171940968757990587790912383, −1.73503280561763342349569219973, −0.41350071560858887148526125659, 1.58544750883032014644645527774, 2.78405286191202133044887024297, 3.52451004385857063902016839595, 4.42843307425872158627013801696, 5.71046951547934159512374800317, 6.12281696972679269027015061820, 6.77327552214052816739046429422, 7.67825483624831164410697415493, 8.843366966619785574275387106391, 9.235738536299709006534482469911