Properties

Label 4-2312e2-1.1-c0e2-0-3
Degree $4$
Conductor $5345344$
Sign $1$
Analytic cond. $1.33134$
Root an. cond. $1.07416$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 4·8-s + 5·16-s − 4·19-s + 2·25-s + 6·32-s − 8·38-s + 2·49-s + 4·50-s + 7·64-s − 12·76-s − 81-s + 4·98-s + 6·100-s + 127-s + 8·128-s + 131-s + 137-s + 139-s + 149-s + 151-s − 16·152-s + 157-s − 2·162-s + 163-s + 167-s + ⋯
L(s)  = 1  + 2·2-s + 3·4-s + 4·8-s + 5·16-s − 4·19-s + 2·25-s + 6·32-s − 8·38-s + 2·49-s + 4·50-s + 7·64-s − 12·76-s − 81-s + 4·98-s + 6·100-s + 127-s + 8·128-s + 131-s + 137-s + 139-s + 149-s + 151-s − 16·152-s + 157-s − 2·162-s + 163-s + 167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5345344\)    =    \(2^{6} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(1.33134\)
Root analytic conductor: \(1.07416\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5345344,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(5.014745264\)
\(L(\frac12)\) \(\approx\) \(5.014745264\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
17 \( 1 \)
good3$C_2^2$ \( 1 + T^{4} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_2^2$ \( 1 + T^{4} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_1$ \( ( 1 + T )^{4} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2^2$ \( 1 + T^{4} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2^2$ \( 1 + T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2^2$ \( 1 + T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.262721823234324910135023539174, −8.883398798019097365126161524759, −8.385706739000222452975211300862, −8.337764998389182441896746949134, −7.66365608714956879840364692553, −7.13817165575138674566917653131, −6.93718979181982970125104715823, −6.51010807287264474384057637097, −6.13429333521976490677472215548, −6.01870069188019296488956209307, −5.26022981619227638648194666518, −5.02421312217761688986279394215, −4.41273145556537044693568969653, −4.27336608149448908364295689385, −3.88872460093310303424831648782, −3.33782721863083347108895231418, −2.60448804570589962107593101612, −2.47035804445673483457675783709, −1.94518733367350767376102188026, −1.20445136071991780073158345599, 1.20445136071991780073158345599, 1.94518733367350767376102188026, 2.47035804445673483457675783709, 2.60448804570589962107593101612, 3.33782721863083347108895231418, 3.88872460093310303424831648782, 4.27336608149448908364295689385, 4.41273145556537044693568969653, 5.02421312217761688986279394215, 5.26022981619227638648194666518, 6.01870069188019296488956209307, 6.13429333521976490677472215548, 6.51010807287264474384057637097, 6.93718979181982970125104715823, 7.13817165575138674566917653131, 7.66365608714956879840364692553, 8.337764998389182441896746949134, 8.385706739000222452975211300862, 8.883398798019097365126161524759, 9.262721823234324910135023539174

Graph of the $Z$-function along the critical line