Properties

Label 4-2312e2-1.1-c0e2-0-1
Degree $4$
Conductor $5345344$
Sign $1$
Analytic cond. $1.33134$
Root an. cond. $1.07416$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s + 5·16-s + 4·19-s − 2·25-s − 6·32-s − 8·38-s − 2·49-s + 4·50-s + 7·64-s + 12·76-s − 81-s + 4·98-s − 6·100-s + 127-s − 8·128-s + 131-s + 137-s + 139-s + 149-s + 151-s − 16·152-s + 157-s + 2·162-s + 163-s + 167-s + ⋯
L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s + 5·16-s + 4·19-s − 2·25-s − 6·32-s − 8·38-s − 2·49-s + 4·50-s + 7·64-s + 12·76-s − 81-s + 4·98-s − 6·100-s + 127-s − 8·128-s + 131-s + 137-s + 139-s + 149-s + 151-s − 16·152-s + 157-s + 2·162-s + 163-s + 167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5345344\)    =    \(2^{6} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(1.33134\)
Root analytic conductor: \(1.07416\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5345344,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5261019259\)
\(L(\frac12)\) \(\approx\) \(0.5261019259\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
17 \( 1 \)
good3$C_2^2$ \( 1 + T^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2^2$ \( 1 + T^{4} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_1$ \( ( 1 - T )^{4} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_2^2$ \( 1 + T^{4} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2^2$ \( 1 + T^{4} \)
79$C_2$ \( ( 1 + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2^2$ \( 1 + T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.614264772597664196256758051938, −9.102005453951643520433010899772, −8.707458078458520920068480075152, −8.031326241540536464289443557890, −7.953517020825544983906502758866, −7.48956473704374004536494950397, −7.45270596970687120752617307169, −6.83830519716989257265969354464, −6.49323256411014365129778835052, −5.97865340789028463133336847762, −5.46389556050631479372512015207, −5.43953426940813327881853049335, −4.74657607714187197422294611105, −3.71682493019203716489889266243, −3.57168116561604662871776414935, −2.85772248277175471962597874792, −2.74398596629721884571899181962, −1.64456328964810622575787843166, −1.58160263771941075541406582282, −0.72067421084153552208929433333, 0.72067421084153552208929433333, 1.58160263771941075541406582282, 1.64456328964810622575787843166, 2.74398596629721884571899181962, 2.85772248277175471962597874792, 3.57168116561604662871776414935, 3.71682493019203716489889266243, 4.74657607714187197422294611105, 5.43953426940813327881853049335, 5.46389556050631479372512015207, 5.97865340789028463133336847762, 6.49323256411014365129778835052, 6.83830519716989257265969354464, 7.45270596970687120752617307169, 7.48956473704374004536494950397, 7.953517020825544983906502758866, 8.031326241540536464289443557890, 8.707458078458520920068480075152, 9.102005453951643520433010899772, 9.614264772597664196256758051938

Graph of the $Z$-function along the critical line