Properties

Label 2-48e2-1.1-c3-0-64
Degree $2$
Conductor $2304$
Sign $1$
Analytic cond. $135.940$
Root an. cond. $11.6593$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.15·5-s + 27.4·7-s − 20.5·11-s + 32.0·13-s + 111.·17-s + 129.·19-s − 9.16·23-s − 41.1·25-s − 41.0·29-s + 187.·31-s + 251.·35-s − 114.·37-s + 282.·41-s − 89.3·43-s − 54.6·47-s + 408.·49-s − 726.·53-s − 187.·55-s + 216.·59-s + 754.·61-s + 293.·65-s + 379.·67-s − 302.·71-s + 504.·73-s − 562.·77-s − 301.·79-s − 599.·83-s + ⋯
L(s)  = 1  + 0.818·5-s + 1.48·7-s − 0.562·11-s + 0.683·13-s + 1.59·17-s + 1.56·19-s − 0.0830·23-s − 0.329·25-s − 0.262·29-s + 1.08·31-s + 1.21·35-s − 0.507·37-s + 1.07·41-s − 0.317·43-s − 0.169·47-s + 1.19·49-s − 1.88·53-s − 0.460·55-s + 0.477·59-s + 1.58·61-s + 0.559·65-s + 0.691·67-s − 0.504·71-s + 0.808·73-s − 0.832·77-s − 0.429·79-s − 0.792·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(135.940\)
Root analytic conductor: \(11.6593\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2304,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.960193942\)
\(L(\frac12)\) \(\approx\) \(3.960193942\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 9.15T + 125T^{2} \)
7 \( 1 - 27.4T + 343T^{2} \)
11 \( 1 + 20.5T + 1.33e3T^{2} \)
13 \( 1 - 32.0T + 2.19e3T^{2} \)
17 \( 1 - 111.T + 4.91e3T^{2} \)
19 \( 1 - 129.T + 6.85e3T^{2} \)
23 \( 1 + 9.16T + 1.21e4T^{2} \)
29 \( 1 + 41.0T + 2.43e4T^{2} \)
31 \( 1 - 187.T + 2.97e4T^{2} \)
37 \( 1 + 114.T + 5.06e4T^{2} \)
41 \( 1 - 282.T + 6.89e4T^{2} \)
43 \( 1 + 89.3T + 7.95e4T^{2} \)
47 \( 1 + 54.6T + 1.03e5T^{2} \)
53 \( 1 + 726.T + 1.48e5T^{2} \)
59 \( 1 - 216.T + 2.05e5T^{2} \)
61 \( 1 - 754.T + 2.26e5T^{2} \)
67 \( 1 - 379.T + 3.00e5T^{2} \)
71 \( 1 + 302.T + 3.57e5T^{2} \)
73 \( 1 - 504.T + 3.89e5T^{2} \)
79 \( 1 + 301.T + 4.93e5T^{2} \)
83 \( 1 + 599.T + 5.71e5T^{2} \)
89 \( 1 + 277.T + 7.04e5T^{2} \)
97 \( 1 + 765.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.460827656502033814586596566504, −7.945066488648513771639825870649, −7.31804025920619724697011036400, −6.09791993292967328864996146751, −5.41765775799692119809725133327, −4.95143584382472748902946692083, −3.74580905898083027413316148088, −2.73650201248061846516988857273, −1.63165942303202124481769589764, −0.997978014035165967829543820555, 0.997978014035165967829543820555, 1.63165942303202124481769589764, 2.73650201248061846516988857273, 3.74580905898083027413316148088, 4.95143584382472748902946692083, 5.41765775799692119809725133327, 6.09791993292967328864996146751, 7.31804025920619724697011036400, 7.945066488648513771639825870649, 8.460827656502033814586596566504

Graph of the $Z$-function along the critical line