Properties

Label 2-48e2-1.1-c3-0-14
Degree $2$
Conductor $2304$
Sign $1$
Analytic cond. $135.940$
Root an. cond. $11.6593$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.4·5-s − 6.42·7-s − 61.6·11-s + 64.8·13-s + 75.6·17-s − 10.3·19-s − 156.·23-s − 16.3·25-s + 53.7·29-s − 227.·31-s + 66.9·35-s + 10.3·37-s − 70.4·41-s + 298.·43-s − 89.9·47-s − 301.·49-s − 388.·53-s + 642.·55-s − 324·59-s + 324·61-s − 675.·65-s − 920.·67-s − 995.·71-s − 362.·73-s + 396.·77-s + 1.09e3·79-s + 791.·83-s + ⋯
L(s)  = 1  − 0.932·5-s − 0.346·7-s − 1.69·11-s + 1.38·13-s + 1.07·17-s − 0.124·19-s − 1.42·23-s − 0.131·25-s + 0.344·29-s − 1.31·31-s + 0.323·35-s + 0.0458·37-s − 0.268·41-s + 1.05·43-s − 0.279·47-s − 0.879·49-s − 1.00·53-s + 1.57·55-s − 0.714·59-s + 0.680·61-s − 1.28·65-s − 1.67·67-s − 1.66·71-s − 0.580·73-s + 0.586·77-s + 1.56·79-s + 1.04·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(135.940\)
Root analytic conductor: \(11.6593\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2304,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8743658319\)
\(L(\frac12)\) \(\approx\) \(0.8743658319\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 10.4T + 125T^{2} \)
7 \( 1 + 6.42T + 343T^{2} \)
11 \( 1 + 61.6T + 1.33e3T^{2} \)
13 \( 1 - 64.8T + 2.19e3T^{2} \)
17 \( 1 - 75.6T + 4.91e3T^{2} \)
19 \( 1 + 10.3T + 6.85e3T^{2} \)
23 \( 1 + 156.T + 1.21e4T^{2} \)
29 \( 1 - 53.7T + 2.43e4T^{2} \)
31 \( 1 + 227.T + 2.97e4T^{2} \)
37 \( 1 - 10.3T + 5.06e4T^{2} \)
41 \( 1 + 70.4T + 6.89e4T^{2} \)
43 \( 1 - 298.T + 7.95e4T^{2} \)
47 \( 1 + 89.9T + 1.03e5T^{2} \)
53 \( 1 + 388.T + 1.48e5T^{2} \)
59 \( 1 + 324T + 2.05e5T^{2} \)
61 \( 1 - 324T + 2.26e5T^{2} \)
67 \( 1 + 920.T + 3.00e5T^{2} \)
71 \( 1 + 995.T + 3.57e5T^{2} \)
73 \( 1 + 362.T + 3.89e5T^{2} \)
79 \( 1 - 1.09e3T + 4.93e5T^{2} \)
83 \( 1 - 791.T + 5.71e5T^{2} \)
89 \( 1 + 150.T + 7.04e5T^{2} \)
97 \( 1 + 1.87e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.409502678193804569082483484720, −7.87967547964724834613694653789, −7.40876455029161502548774784614, −6.15076366874989163708813151438, −5.64123665416722828886144297211, −4.57716574785031540968277455659, −3.65479408654151670982084935139, −3.05983758763784487581481129238, −1.77383841256133780901884382752, −0.40818502472302356550342181393, 0.40818502472302356550342181393, 1.77383841256133780901884382752, 3.05983758763784487581481129238, 3.65479408654151670982084935139, 4.57716574785031540968277455659, 5.64123665416722828886144297211, 6.15076366874989163708813151438, 7.40876455029161502548774784614, 7.87967547964724834613694653789, 8.409502678193804569082483484720

Graph of the $Z$-function along the critical line