Properties

Label 8-48e8-1.1-c2e4-0-25
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $1.55335\times 10^{7}$
Root an. cond. $7.92334$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·7-s − 64·25-s + 176·31-s − 36·49-s + 64·73-s − 304·79-s + 704·97-s + 112·103-s + 92·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 548·169-s + 173-s − 1.02e3·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 16/7·7-s − 2.55·25-s + 5.67·31-s − 0.734·49-s + 0.876·73-s − 3.84·79-s + 7.25·97-s + 1.08·103-s + 0.760·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.24·169-s + 0.00578·173-s − 5.85·175-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.55335\times 10^{7}\)
Root analytic conductor: \(7.92334\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(10.74171366\)
\(L(\frac12)\) \(\approx\) \(10.74171366\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + 32 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p^{2} T^{2} )^{4} \)
11$C_2^2$ \( ( 1 - 46 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 274 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 416 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 466 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 770 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 1664 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 44 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 1582 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 1184 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 2098 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 2782 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 4160 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 5810 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 4942 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 8914 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 7490 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p^{2} T^{2} )^{4} \)
79$C_2$ \( ( 1 + 76 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 334 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 15680 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 176 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.06731952945753248223027695523, −6.06337032267329610217027752168, −5.85428825504225885063987075588, −5.62235373311812430457537750033, −5.39412280022005763078632898776, −4.91752098140652461905448100610, −4.86450393601892199271295197811, −4.60566011930525692929212389140, −4.60220576230541033344308361120, −4.58037593154408979949692461879, −4.08118794736149279403699981437, −4.05133855992274238300234509729, −3.60247648213435426086943048442, −3.23070614190434603255454481273, −3.10570115444951735905462574386, −3.00238115578012267474457659008, −2.57067832050492290453069938379, −2.29976014619415866652152706402, −1.84468951035379798831087471219, −1.81233640217990927207400124198, −1.80027665087945376187880665899, −1.24107438022094981731278304277, −0.809277034049316210801965922397, −0.72569900014832694206620372434, −0.37686662153160130292732900161, 0.37686662153160130292732900161, 0.72569900014832694206620372434, 0.809277034049316210801965922397, 1.24107438022094981731278304277, 1.80027665087945376187880665899, 1.81233640217990927207400124198, 1.84468951035379798831087471219, 2.29976014619415866652152706402, 2.57067832050492290453069938379, 3.00238115578012267474457659008, 3.10570115444951735905462574386, 3.23070614190434603255454481273, 3.60247648213435426086943048442, 4.05133855992274238300234509729, 4.08118794736149279403699981437, 4.58037593154408979949692461879, 4.60220576230541033344308361120, 4.60566011930525692929212389140, 4.86450393601892199271295197811, 4.91752098140652461905448100610, 5.39412280022005763078632898776, 5.62235373311812430457537750033, 5.85428825504225885063987075588, 6.06337032267329610217027752168, 6.06731952945753248223027695523

Graph of the $Z$-function along the critical line