Properties

Label 8-48e8-1.1-c2e4-0-24
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $1.55335\times 10^{7}$
Root an. cond. $7.92334$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·7-s − 64·25-s − 176·31-s − 36·49-s + 64·73-s + 304·79-s + 704·97-s − 112·103-s + 92·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 548·169-s + 173-s + 1.02e3·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 2.28·7-s − 2.55·25-s − 5.67·31-s − 0.734·49-s + 0.876·73-s + 3.84·79-s + 7.25·97-s − 1.08·103-s + 0.760·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.24·169-s + 0.00578·173-s + 5.85·175-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.55335\times 10^{7}\)
Root analytic conductor: \(7.92334\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.737612137\)
\(L(\frac12)\) \(\approx\) \(1.737612137\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + 32 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2$ \( ( 1 + 4 T + p^{2} T^{2} )^{4} \)
11$C_2^2$ \( ( 1 - 46 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 274 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 416 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 466 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 770 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 1664 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 44 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 1582 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 1184 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 2098 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 2782 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 4160 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 5810 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 4942 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 8914 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 7490 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p^{2} T^{2} )^{4} \)
79$C_2$ \( ( 1 - 76 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 334 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 15680 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 176 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.30849906416908693412437830873, −6.10478465648521390521766871097, −5.61362254458356761899676427107, −5.59876148754022965635710888658, −5.59257524818157604085686642532, −5.22190377123343109696560154071, −4.96031454285025270952516475346, −4.80120543012464786538411172103, −4.62112821039282335495805284946, −3.98136935092309155945015115159, −3.87198502247601285257099005230, −3.80460493862554123890398967631, −3.63980142940457781455487591228, −3.48137153723380943899903318778, −3.17523253079443008466307657615, −3.05763122170834896942337825751, −2.71470673711931664214546839366, −2.11098884714147171744501206171, −2.04985678904004030934329213547, −2.01152365581565939186641765976, −1.65404570545062085024827180489, −1.36432036659894944600216157795, −0.44524620961814616117590422170, −0.44296085759583310367773924084, −0.37610984496814733943518254230, 0.37610984496814733943518254230, 0.44296085759583310367773924084, 0.44524620961814616117590422170, 1.36432036659894944600216157795, 1.65404570545062085024827180489, 2.01152365581565939186641765976, 2.04985678904004030934329213547, 2.11098884714147171744501206171, 2.71470673711931664214546839366, 3.05763122170834896942337825751, 3.17523253079443008466307657615, 3.48137153723380943899903318778, 3.63980142940457781455487591228, 3.80460493862554123890398967631, 3.87198502247601285257099005230, 3.98136935092309155945015115159, 4.62112821039282335495805284946, 4.80120543012464786538411172103, 4.96031454285025270952516475346, 5.22190377123343109696560154071, 5.59257524818157604085686642532, 5.59876148754022965635710888658, 5.61362254458356761899676427107, 6.10478465648521390521766871097, 6.30849906416908693412437830873

Graph of the $Z$-function along the critical line