Properties

Label 8-48e8-1.1-c2e4-0-16
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $1.55335\times 10^{7}$
Root an. cond. $7.92334$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 72·17-s − 76·25-s − 216·41-s + 188·49-s − 40·73-s − 72·89-s − 136·97-s − 360·113-s + 100·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 188·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 4.23·17-s − 3.03·25-s − 5.26·41-s + 3.83·49-s − 0.547·73-s − 0.808·89-s − 1.40·97-s − 3.18·113-s + 0.826·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 1.11·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.55335\times 10^{7}\)
Root analytic conductor: \(7.92334\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.281375940\)
\(L(\frac12)\) \(\approx\) \(3.281375940\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + 38 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 94 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 50 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 94 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 18 T + p^{2} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 290 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 238 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 710 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 1438 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 1010 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 54 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 3266 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 3122 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 4474 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 3074 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 5090 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 1582 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 9982 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 13586 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{4} \)
97$C_2$ \( ( 1 + 34 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.07045181940258711677271354676, −5.79808770915859475070445701763, −5.78075041926975994405866492294, −5.60814377922112233866507038295, −5.32972786236860816435231890390, −5.27466707646920596281110672966, −5.24181586063049763988165489289, −4.64197612385890081912801446061, −4.63502026540535267666422667269, −4.07589132168543750839261375208, −4.03179492751908042416226767094, −3.81912763757014927954831060414, −3.60030202344744116065612202545, −3.37499114718990551931288490770, −3.26081119285340019929505601886, −2.87196078648473092238224030275, −2.76178910322190003686337738467, −2.39489635718795690160518039094, −1.96081875340444630844393176502, −1.70325571006704654315042559556, −1.54133065481607711135447190067, −1.39009292994680560335532760675, −0.865188031110148800678336184681, −0.58256539221605729746424592267, −0.23471710417514245836416505578, 0.23471710417514245836416505578, 0.58256539221605729746424592267, 0.865188031110148800678336184681, 1.39009292994680560335532760675, 1.54133065481607711135447190067, 1.70325571006704654315042559556, 1.96081875340444630844393176502, 2.39489635718795690160518039094, 2.76178910322190003686337738467, 2.87196078648473092238224030275, 3.26081119285340019929505601886, 3.37499114718990551931288490770, 3.60030202344744116065612202545, 3.81912763757014927954831060414, 4.03179492751908042416226767094, 4.07589132168543750839261375208, 4.63502026540535267666422667269, 4.64197612385890081912801446061, 5.24181586063049763988165489289, 5.27466707646920596281110672966, 5.32972786236860816435231890390, 5.60814377922112233866507038295, 5.78075041926975994405866492294, 5.79808770915859475070445701763, 6.07045181940258711677271354676

Graph of the $Z$-function along the critical line