Properties

Label 8-48e8-1.1-c2e4-0-20
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $1.55335\times 10^{7}$
Root an. cond. $7.92334$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 100·25-s + 188·49-s − 184·73-s + 8·97-s + 484·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 292·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯
L(s)  = 1  − 4·25-s + 3.83·49-s − 2.52·73-s + 8/97·97-s + 4·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 1.72·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + 0.00436·229-s + 0.00429·233-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.55335\times 10^{7}\)
Root analytic conductor: \(7.92334\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.441944007\)
\(L(\frac12)\) \(\approx\) \(2.441944007\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
7$C_2^2$ \( ( 1 - 94 T^{2} + p^{4} T^{4} )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
13$C_2^2$ \( ( 1 + 146 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
19$C_2$ \( ( 1 - 26 T + p^{2} T^{2} )^{2}( 1 + 26 T + p^{2} T^{2} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
29$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 194 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 2062 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
43$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{2}( 1 + 22 T + p^{2} T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
53$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
61$C_2^2$ \( ( 1 - 1966 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 122 T + p^{2} T^{2} )^{2}( 1 + 122 T + p^{2} T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
73$C_2$ \( ( 1 + 46 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 7682 T^{2} + p^{4} T^{4} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
89$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
97$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.05007662987097755302700461408, −5.92868798608084289000154036913, −5.82287087430057570229943984018, −5.68998749069041600488985731644, −5.56549297165530925564399277277, −5.21150718482105195636687613336, −4.89221071113872100082874327917, −4.59762212803831044866636257056, −4.54352273170685158708011796442, −4.37128960434190520622242616431, −3.87864323505332819700706137118, −3.81463205791533725876342778387, −3.73360162475811695293308427208, −3.56376982712620355006861496839, −3.13138767326344879571441330650, −2.75340168926415540908018792907, −2.64270932463618340768017923252, −2.33901227208363476252769218598, −2.09789687933273866820372978479, −1.80454615586364721233489680523, −1.69681759386098333015303043424, −1.13699750212752712994229667093, −0.993176949362384907866768054133, −0.38082544349490654396360220884, −0.28621413222160152279031065412, 0.28621413222160152279031065412, 0.38082544349490654396360220884, 0.993176949362384907866768054133, 1.13699750212752712994229667093, 1.69681759386098333015303043424, 1.80454615586364721233489680523, 2.09789687933273866820372978479, 2.33901227208363476252769218598, 2.64270932463618340768017923252, 2.75340168926415540908018792907, 3.13138767326344879571441330650, 3.56376982712620355006861496839, 3.73360162475811695293308427208, 3.81463205791533725876342778387, 3.87864323505332819700706137118, 4.37128960434190520622242616431, 4.54352273170685158708011796442, 4.59762212803831044866636257056, 4.89221071113872100082874327917, 5.21150718482105195636687613336, 5.56549297165530925564399277277, 5.68998749069041600488985731644, 5.82287087430057570229943984018, 5.92868798608084289000154036913, 6.05007662987097755302700461408

Graph of the $Z$-function along the critical line