Properties

Label 8-48e8-1.1-c2e4-0-3
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $1.55335\times 10^{7}$
Root an. cond. $7.92334$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 100·25-s − 188·49-s − 184·73-s − 8·97-s − 484·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 292·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯
L(s)  = 1  + 4·25-s − 3.83·49-s − 2.52·73-s − 0.0824·97-s − 4·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 1.72·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + 0.00436·229-s + 0.00429·233-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.55335\times 10^{7}\)
Root analytic conductor: \(7.92334\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.06426642778\)
\(L(\frac12)\) \(\approx\) \(0.06426642778\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
7$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{2}( 1 + 2 T + p^{2} T^{2} )^{2} \)
11$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
13$C_2^2$ \( ( 1 + 146 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 46 T^{2} + p^{4} T^{4} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
31$C_2$ \( ( 1 - 46 T + p^{2} T^{2} )^{2}( 1 + 46 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( ( 1 - 2062 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 3214 T^{2} + p^{4} T^{4} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
59$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
61$C_2^2$ \( ( 1 - 1966 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 5906 T^{2} + p^{4} T^{4} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
73$C_2$ \( ( 1 + 46 T + p^{2} T^{2} )^{4} \)
79$C_2$ \( ( 1 - 142 T + p^{2} T^{2} )^{2}( 1 + 142 T + p^{2} T^{2} )^{2} \)
83$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
89$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
97$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.23248525516154022199607206244, −6.14353094764651005355899274442, −5.90605606682201588505037692799, −5.32866737403374284677584309886, −5.31212491811102545489852717806, −5.26077982744396780234714156184, −4.86973399648162075734635453368, −4.83247014835427112347868630950, −4.46584739313504489436522546372, −4.42856291239911575569499403689, −4.20743777020550089659871819793, −3.69844199999444156628778317366, −3.58586603657582804014793119464, −3.28834548187421380994412350410, −3.16570136011276093075230831840, −2.85985099796296523317651667628, −2.72572708795792804742666724951, −2.40006293295397425741309633681, −2.22939913359474318135192884964, −1.68045250254813599180321532949, −1.40893859266502846699019968045, −1.18065369530714239652909557510, −1.14867004151208707733286682957, −0.54124297949325164943205189098, −0.03188909107629850205720401132, 0.03188909107629850205720401132, 0.54124297949325164943205189098, 1.14867004151208707733286682957, 1.18065369530714239652909557510, 1.40893859266502846699019968045, 1.68045250254813599180321532949, 2.22939913359474318135192884964, 2.40006293295397425741309633681, 2.72572708795792804742666724951, 2.85985099796296523317651667628, 3.16570136011276093075230831840, 3.28834548187421380994412350410, 3.58586603657582804014793119464, 3.69844199999444156628778317366, 4.20743777020550089659871819793, 4.42856291239911575569499403689, 4.46584739313504489436522546372, 4.83247014835427112347868630950, 4.86973399648162075734635453368, 5.26077982744396780234714156184, 5.31212491811102545489852717806, 5.32866737403374284677584309886, 5.90605606682201588505037692799, 6.14353094764651005355899274442, 6.23248525516154022199607206244

Graph of the $Z$-function along the critical line