Properties

Label 8-48e8-1.1-c1e4-0-12
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $114561.$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s + 16·23-s + 24·25-s − 8·29-s + 16·43-s − 16·47-s + 4·49-s + 8·53-s + 48·67-s + 16·71-s − 16·73-s + 32·97-s − 8·101-s + 128·115-s + 28·121-s + 8·125-s + 127-s + 131-s + 137-s + 139-s − 64·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 36·169-s + ⋯
L(s)  = 1  + 3.57·5-s + 3.33·23-s + 24/5·25-s − 1.48·29-s + 2.43·43-s − 2.33·47-s + 4/7·49-s + 1.09·53-s + 5.86·67-s + 1.89·71-s − 1.87·73-s + 3.24·97-s − 0.796·101-s + 11.9·115-s + 2.54·121-s + 0.715·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.31·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.76·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(114561.\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(16.40128215\)
\(L(\frac12)\) \(\approx\) \(16.40128215\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_{4}$ \( ( 1 - 4 T + 12 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
7$C_4\times C_2$ \( 1 - 4 T^{2} - 26 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
13$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 32 T^{2} + 706 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 - 8 T + 54 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 + 4 T + 60 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 36 T^{2} + 1094 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 76 T^{2} + 3670 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 128 T^{2} + 7330 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 - 8 T + 70 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 + 8 T + 38 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 - 4 T + 60 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 44 T^{2} - 746 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 172 T^{2} + 14326 T^{4} - 172 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
71$D_{4}$ \( ( 1 - 8 T + 86 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
79$C_4\times C_2$ \( 1 - 164 T^{2} + 18054 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 188 T^{2} + 20566 T^{4} - 188 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 192 T^{2} + 20450 T^{4} - 192 p^{2} T^{6} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 - 16 T + 226 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.44230384417422423822698072962, −6.16905849183434429478258517947, −5.75342954271676378654892243713, −5.71092882633406978161809065941, −5.68337696325808554607420135233, −5.38890400458878353731772284274, −5.24097923808208837279425431541, −5.20815156810270848403629058594, −4.74069361002316984864468349053, −4.71622992510796016796297414721, −4.22587661591381140889934911571, −4.01228376974065599760273592070, −3.97194765791397514818502033809, −3.32120340323026275174472131742, −3.21068923856874190041442762923, −3.11341700999844826315095394977, −2.85406355455886356601623612481, −2.28848788511216843242081316202, −2.19088929907138344121106205761, −2.07904868722621480438841046470, −1.79497165810668352076306835982, −1.77452068044452813381761043006, −0.954886663720236993772733085453, −0.904655123399420313629413041588, −0.67116515437534502075938333588, 0.67116515437534502075938333588, 0.904655123399420313629413041588, 0.954886663720236993772733085453, 1.77452068044452813381761043006, 1.79497165810668352076306835982, 2.07904868722621480438841046470, 2.19088929907138344121106205761, 2.28848788511216843242081316202, 2.85406355455886356601623612481, 3.11341700999844826315095394977, 3.21068923856874190041442762923, 3.32120340323026275174472131742, 3.97194765791397514818502033809, 4.01228376974065599760273592070, 4.22587661591381140889934911571, 4.71622992510796016796297414721, 4.74069361002316984864468349053, 5.20815156810270848403629058594, 5.24097923808208837279425431541, 5.38890400458878353731772284274, 5.68337696325808554607420135233, 5.71092882633406978161809065941, 5.75342954271676378654892243713, 6.16905849183434429478258517947, 6.44230384417422423822698072962

Graph of the $Z$-function along the critical line