| L(s) = 1 | + 3.31i·3-s + 35.2i·7-s + 16.0·9-s + 35.8·11-s + 26.4i·13-s + 92.3i·17-s − 71.9·19-s − 116.·21-s − 23i·23-s + 142. i·27-s − 131.·29-s − 330.·31-s + 118. i·33-s + 55.6i·37-s − 87.7·39-s + ⋯ |
| L(s) = 1 | + 0.637i·3-s + 1.90i·7-s + 0.593·9-s + 0.981·11-s + 0.564i·13-s + 1.31i·17-s − 0.868·19-s − 1.21·21-s − 0.208i·23-s + 1.01i·27-s − 0.843·29-s − 1.91·31-s + 0.626i·33-s + 0.247i·37-s − 0.360·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.644316685\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.644316685\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 + 23iT \) |
| good | 3 | \( 1 - 3.31iT - 27T^{2} \) |
| 7 | \( 1 - 35.2iT - 343T^{2} \) |
| 11 | \( 1 - 35.8T + 1.33e3T^{2} \) |
| 13 | \( 1 - 26.4iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 92.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 71.9T + 6.85e3T^{2} \) |
| 29 | \( 1 + 131.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 330.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 55.6iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 403.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 289. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 141. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 0.542iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 241.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 779.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 324. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 408.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 124. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 896.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 508. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 908.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 549. iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.102242879147742182958551771279, −8.684377138621383306168984652144, −7.63283826971773222728082612927, −6.55095307437814245493011583309, −5.96613389027112338871856644139, −5.18936543902609130962871997581, −4.17916394644234212287626811082, −3.59917064271969756366155378660, −2.23208199099577972880030134562, −1.62767622581435543115874254314,
0.34004748075073622184532496676, 1.05752835792279089782975931092, 1.98021358515102109284336244039, 3.44148085115144353819739422315, 4.08733000266209100179720302832, 4.85669188960406693346365259934, 6.12541066277081842302498174551, 6.85410222287255245805829278788, 7.48723723668728939967973929845, 7.76113813157495858016709821238