Properties

Label 2-2300-5.4-c3-0-68
Degree $2$
Conductor $2300$
Sign $-0.894 + 0.447i$
Analytic cond. $135.704$
Root an. cond. $11.6492$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.13i·3-s + 19.8i·7-s − 10.6·9-s − 55.2·11-s − 1.83i·13-s + 130. i·17-s + 17.3·19-s + 121.·21-s − 23i·23-s − 100. i·27-s − 77.6·29-s + 206.·31-s + 338. i·33-s + 251. i·37-s − 11.2·39-s + ⋯
L(s)  = 1  − 1.18i·3-s + 1.07i·7-s − 0.393·9-s − 1.51·11-s − 0.0391i·13-s + 1.85i·17-s + 0.208·19-s + 1.26·21-s − 0.208i·23-s − 0.716i·27-s − 0.497·29-s + 1.19·31-s + 1.78i·33-s + 1.11i·37-s − 0.0462·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2300\)    =    \(2^{2} \cdot 5^{2} \cdot 23\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(135.704\)
Root analytic conductor: \(11.6492\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{2300} (1749, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2300,\ (\ :3/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6886617845\)
\(L(\frac12)\) \(\approx\) \(0.6886617845\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + 23iT \)
good3 \( 1 + 6.13iT - 27T^{2} \)
7 \( 1 - 19.8iT - 343T^{2} \)
11 \( 1 + 55.2T + 1.33e3T^{2} \)
13 \( 1 + 1.83iT - 2.19e3T^{2} \)
17 \( 1 - 130. iT - 4.91e3T^{2} \)
19 \( 1 - 17.3T + 6.85e3T^{2} \)
29 \( 1 + 77.6T + 2.43e4T^{2} \)
31 \( 1 - 206.T + 2.97e4T^{2} \)
37 \( 1 - 251. iT - 5.06e4T^{2} \)
41 \( 1 + 157.T + 6.89e4T^{2} \)
43 \( 1 + 336. iT - 7.95e4T^{2} \)
47 \( 1 + 488. iT - 1.03e5T^{2} \)
53 \( 1 - 562. iT - 1.48e5T^{2} \)
59 \( 1 - 125.T + 2.05e5T^{2} \)
61 \( 1 - 163.T + 2.26e5T^{2} \)
67 \( 1 - 769. iT - 3.00e5T^{2} \)
71 \( 1 - 113.T + 3.57e5T^{2} \)
73 \( 1 + 747. iT - 3.89e5T^{2} \)
79 \( 1 + 1.11e3T + 4.93e5T^{2} \)
83 \( 1 + 988. iT - 5.71e5T^{2} \)
89 \( 1 + 1.38e3T + 7.04e5T^{2} \)
97 \( 1 + 1.18e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.444223023202325227100167103743, −7.59260272592863920164433573045, −6.82213457246718184980900734005, −5.93178711732576304261908796666, −5.49339312724569094121746327186, −4.35330789641621675384585804859, −3.04305927958178255516714991471, −2.25375830587764812679930052808, −1.50577018348259849735334198079, −0.15591038483579904556951374453, 0.906848964720949155733303957375, 2.54198203534351246946011030540, 3.32846622499417302003776750030, 4.28490637912268154095380403012, 4.91743330435719334370339148784, 5.50318170792979599391928552660, 6.81905397323470392142373618077, 7.49641928631971404190523937955, 8.142657893048373619264002688765, 9.287447061589371108423573320094

Graph of the $Z$-function along the critical line