| L(s) = 1 | − 6.13i·3-s + 19.8i·7-s − 10.6·9-s − 55.2·11-s − 1.83i·13-s + 130. i·17-s + 17.3·19-s + 121.·21-s − 23i·23-s − 100. i·27-s − 77.6·29-s + 206.·31-s + 338. i·33-s + 251. i·37-s − 11.2·39-s + ⋯ |
| L(s) = 1 | − 1.18i·3-s + 1.07i·7-s − 0.393·9-s − 1.51·11-s − 0.0391i·13-s + 1.85i·17-s + 0.208·19-s + 1.26·21-s − 0.208i·23-s − 0.716i·27-s − 0.497·29-s + 1.19·31-s + 1.78i·33-s + 1.11i·37-s − 0.0462·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.6886617845\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6886617845\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 + 23iT \) |
| good | 3 | \( 1 + 6.13iT - 27T^{2} \) |
| 7 | \( 1 - 19.8iT - 343T^{2} \) |
| 11 | \( 1 + 55.2T + 1.33e3T^{2} \) |
| 13 | \( 1 + 1.83iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 130. iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 17.3T + 6.85e3T^{2} \) |
| 29 | \( 1 + 77.6T + 2.43e4T^{2} \) |
| 31 | \( 1 - 206.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 251. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 157.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 336. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 488. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 562. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 125.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 163.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 769. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 113.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 747. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.11e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 988. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.38e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.18e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.444223023202325227100167103743, −7.59260272592863920164433573045, −6.82213457246718184980900734005, −5.93178711732576304261908796666, −5.49339312724569094121746327186, −4.35330789641621675384585804859, −3.04305927958178255516714991471, −2.25375830587764812679930052808, −1.50577018348259849735334198079, −0.15591038483579904556951374453,
0.906848964720949155733303957375, 2.54198203534351246946011030540, 3.32846622499417302003776750030, 4.28490637912268154095380403012, 4.91743330435719334370339148784, 5.50318170792979599391928552660, 6.81905397323470392142373618077, 7.49641928631971404190523937955, 8.142657893048373619264002688765, 9.287447061589371108423573320094