Properties

Label 2-230-1.1-c5-0-12
Degree $2$
Conductor $230$
Sign $1$
Analytic cond. $36.8882$
Root an. cond. $6.07357$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 2.70·3-s + 16·4-s + 25·5-s − 10.8·6-s − 158.·7-s + 64·8-s − 235.·9-s + 100·10-s + 280.·11-s − 43.3·12-s + 330.·13-s − 632.·14-s − 67.7·15-s + 256·16-s + 1.50e3·17-s − 942.·18-s + 1.60e3·19-s + 400·20-s + 428.·21-s + 1.12e3·22-s + 529·23-s − 173.·24-s + 625·25-s + 1.32e3·26-s + 1.29e3·27-s − 2.53e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.173·3-s + 0.5·4-s + 0.447·5-s − 0.122·6-s − 1.22·7-s + 0.353·8-s − 0.969·9-s + 0.316·10-s + 0.697·11-s − 0.0868·12-s + 0.542·13-s − 0.862·14-s − 0.0777·15-s + 0.250·16-s + 1.26·17-s − 0.685·18-s + 1.02·19-s + 0.223·20-s + 0.212·21-s + 0.493·22-s + 0.208·23-s − 0.0614·24-s + 0.200·25-s + 0.383·26-s + 0.342·27-s − 0.610·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(230\)    =    \(2 \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(36.8882\)
Root analytic conductor: \(6.07357\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 230,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.972975439\)
\(L(\frac12)\) \(\approx\) \(2.972975439\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
5 \( 1 - 25T \)
23 \( 1 - 529T \)
good3 \( 1 + 2.70T + 243T^{2} \)
7 \( 1 + 158.T + 1.68e4T^{2} \)
11 \( 1 - 280.T + 1.61e5T^{2} \)
13 \( 1 - 330.T + 3.71e5T^{2} \)
17 \( 1 - 1.50e3T + 1.41e6T^{2} \)
19 \( 1 - 1.60e3T + 2.47e6T^{2} \)
29 \( 1 - 2.08e3T + 2.05e7T^{2} \)
31 \( 1 - 6.36e3T + 2.86e7T^{2} \)
37 \( 1 - 2.87e3T + 6.93e7T^{2} \)
41 \( 1 + 1.15e4T + 1.15e8T^{2} \)
43 \( 1 + 1.78e4T + 1.47e8T^{2} \)
47 \( 1 - 2.85e4T + 2.29e8T^{2} \)
53 \( 1 - 2.05e4T + 4.18e8T^{2} \)
59 \( 1 - 1.91e4T + 7.14e8T^{2} \)
61 \( 1 - 2.13e4T + 8.44e8T^{2} \)
67 \( 1 - 3.59e3T + 1.35e9T^{2} \)
71 \( 1 + 3.34e3T + 1.80e9T^{2} \)
73 \( 1 - 8.11e3T + 2.07e9T^{2} \)
79 \( 1 + 5.08e4T + 3.07e9T^{2} \)
83 \( 1 - 9.31e4T + 3.93e9T^{2} \)
89 \( 1 + 5.54e4T + 5.58e9T^{2} \)
97 \( 1 + 8.89e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.67945658760804733218634260444, −10.36199824708435183442331992363, −9.563558767116775231241126330332, −8.405577375455636282925264337849, −6.92182809743135663410199707712, −6.09229428797931296122307380344, −5.30294291223524876694027448388, −3.64064138480563134386134311583, −2.82069548758850593552509454282, −0.968438749829031031849432693166, 0.968438749829031031849432693166, 2.82069548758850593552509454282, 3.64064138480563134386134311583, 5.30294291223524876694027448388, 6.09229428797931296122307380344, 6.92182809743135663410199707712, 8.405577375455636282925264337849, 9.563558767116775231241126330332, 10.36199824708435183442331992363, 11.67945658760804733218634260444

Graph of the $Z$-function along the critical line