Properties

Label 2-230-1.1-c5-0-23
Degree $2$
Conductor $230$
Sign $1$
Analytic cond. $36.8882$
Root an. cond. $6.07357$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 26.5·3-s + 16·4-s + 25·5-s − 106.·6-s + 257.·7-s − 64·8-s + 462.·9-s − 100·10-s + 382.·11-s + 425.·12-s + 152.·13-s − 1.03e3·14-s + 664.·15-s + 256·16-s + 437.·17-s − 1.85e3·18-s − 2.05e3·19-s + 400·20-s + 6.85e3·21-s − 1.52e3·22-s − 529·23-s − 1.70e3·24-s + 625·25-s − 611.·26-s + 5.84e3·27-s + 4.12e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.70·3-s + 0.5·4-s + 0.447·5-s − 1.20·6-s + 1.98·7-s − 0.353·8-s + 1.90·9-s − 0.316·10-s + 0.952·11-s + 0.852·12-s + 0.251·13-s − 1.40·14-s + 0.762·15-s + 0.250·16-s + 0.367·17-s − 1.34·18-s − 1.30·19-s + 0.223·20-s + 3.39·21-s − 0.673·22-s − 0.208·23-s − 0.602·24-s + 0.200·25-s − 0.177·26-s + 1.54·27-s + 0.994·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(230\)    =    \(2 \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(36.8882\)
Root analytic conductor: \(6.07357\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 230,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.886994438\)
\(L(\frac12)\) \(\approx\) \(3.886994438\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
5 \( 1 - 25T \)
23 \( 1 + 529T \)
good3 \( 1 - 26.5T + 243T^{2} \)
7 \( 1 - 257.T + 1.68e4T^{2} \)
11 \( 1 - 382.T + 1.61e5T^{2} \)
13 \( 1 - 152.T + 3.71e5T^{2} \)
17 \( 1 - 437.T + 1.41e6T^{2} \)
19 \( 1 + 2.05e3T + 2.47e6T^{2} \)
29 \( 1 - 2.36e3T + 2.05e7T^{2} \)
31 \( 1 + 4.28e3T + 2.86e7T^{2} \)
37 \( 1 + 1.22e4T + 6.93e7T^{2} \)
41 \( 1 + 1.67e4T + 1.15e8T^{2} \)
43 \( 1 + 4.91e3T + 1.47e8T^{2} \)
47 \( 1 + 2.13e4T + 2.29e8T^{2} \)
53 \( 1 + 3.69e4T + 4.18e8T^{2} \)
59 \( 1 + 2.96e4T + 7.14e8T^{2} \)
61 \( 1 - 2.96e4T + 8.44e8T^{2} \)
67 \( 1 - 2.57e4T + 1.35e9T^{2} \)
71 \( 1 - 2.71e4T + 1.80e9T^{2} \)
73 \( 1 + 4.95e4T + 2.07e9T^{2} \)
79 \( 1 - 7.36e4T + 3.07e9T^{2} \)
83 \( 1 - 5.45e4T + 3.93e9T^{2} \)
89 \( 1 - 2.41e4T + 5.58e9T^{2} \)
97 \( 1 - 1.03e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11151578479588898268534155097, −10.15241664971668333643978968920, −9.033925305323271989508075686435, −8.458156446195016030767542504395, −7.85090226506196515082101010132, −6.66510802785288873600071190689, −4.85433946833117576646713026073, −3.56674647041139659420305073685, −1.96990544035844286340248081941, −1.54850017254776971762569449061, 1.54850017254776971762569449061, 1.96990544035844286340248081941, 3.56674647041139659420305073685, 4.85433946833117576646713026073, 6.66510802785288873600071190689, 7.85090226506196515082101010132, 8.458156446195016030767542504395, 9.033925305323271989508075686435, 10.15241664971668333643978968920, 11.11151578479588898268534155097

Graph of the $Z$-function along the critical line