Properties

Label 12-2275e6-1.1-c1e6-0-2
Degree $12$
Conductor $1.386\times 10^{20}$
Sign $1$
Analytic cond. $3.59377\times 10^{7}$
Root an. cond. $4.26215$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $6$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 3·4-s + 2·6-s − 6·7-s + 8-s − 3·9-s − 9·11-s + 6·12-s − 6·13-s + 6·14-s + 7·16-s − 9·17-s + 3·18-s + 12·21-s + 9·22-s − 4·23-s − 2·24-s + 6·26-s + 13·27-s + 18·28-s + 3·29-s − 3·31-s − 2·32-s + 18·33-s + 9·34-s + 9·36-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 3/2·4-s + 0.816·6-s − 2.26·7-s + 0.353·8-s − 9-s − 2.71·11-s + 1.73·12-s − 1.66·13-s + 1.60·14-s + 7/4·16-s − 2.18·17-s + 0.707·18-s + 2.61·21-s + 1.91·22-s − 0.834·23-s − 0.408·24-s + 1.17·26-s + 2.50·27-s + 3.40·28-s + 0.557·29-s − 0.538·31-s − 0.353·32-s + 3.13·33-s + 1.54·34-s + 3/2·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{12} \cdot 7^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{12} \cdot 7^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(5^{12} \cdot 7^{6} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(3.59377\times 10^{7}\)
Root analytic conductor: \(4.26215\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(6\)
Selberg data: \((12,\ 5^{12} \cdot 7^{6} \cdot 13^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
7 \( ( 1 + T )^{6} \)
13 \( ( 1 + T )^{6} \)
good2 \( 1 + T + p^{2} T^{2} + 3 p T^{3} + 5 p T^{4} + 19 T^{5} + 9 p T^{6} + 19 p T^{7} + 5 p^{3} T^{8} + 3 p^{4} T^{9} + p^{6} T^{10} + p^{5} T^{11} + p^{6} T^{12} \) 6.2.b_e_g_k_t_s
3 \( 1 + 2 T + 7 T^{2} + 7 T^{3} + 28 T^{4} + 35 T^{5} + 116 T^{6} + 35 p T^{7} + 28 p^{2} T^{8} + 7 p^{3} T^{9} + 7 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12} \) 6.3.c_h_h_bc_bj_em
11 \( 1 + 9 T + 7 p T^{2} + 417 T^{3} + 2097 T^{4} + 8223 T^{5} + 30210 T^{6} + 8223 p T^{7} + 2097 p^{2} T^{8} + 417 p^{3} T^{9} + 7 p^{5} T^{10} + 9 p^{5} T^{11} + p^{6} T^{12} \) 6.11.j_cz_qb_dcr_meh_bsry
17 \( 1 + 9 T + 98 T^{2} + 600 T^{3} + 3999 T^{4} + 18435 T^{5} + 89124 T^{6} + 18435 p T^{7} + 3999 p^{2} T^{8} + 600 p^{3} T^{9} + 98 p^{4} T^{10} + 9 p^{5} T^{11} + p^{6} T^{12} \) 6.17.j_du_xc_fxv_bbhb_fbvw
19 \( 1 + 45 T^{2} + 31 T^{3} + 785 T^{4} + 1819 T^{5} + 11018 T^{6} + 1819 p T^{7} + 785 p^{2} T^{8} + 31 p^{3} T^{9} + 45 p^{4} T^{10} + p^{6} T^{12} \) 6.19.a_bt_bf_bef_crz_qhu
23 \( 1 + 4 T + 50 T^{2} + 9 T^{3} + 951 T^{4} - 1556 T^{5} + 25767 T^{6} - 1556 p T^{7} + 951 p^{2} T^{8} + 9 p^{3} T^{9} + 50 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12} \) 6.23.e_by_j_bkp_achw_bmdb
29 \( 1 - 3 T + 128 T^{2} - 378 T^{3} + 7571 T^{4} - 20625 T^{5} + 272525 T^{6} - 20625 p T^{7} + 7571 p^{2} T^{8} - 378 p^{3} T^{9} + 128 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \) 6.29.ad_ey_aoo_lff_abenh_pndt
31 \( 1 + 3 T + 63 T^{2} + 306 T^{3} + 2693 T^{4} + 11479 T^{5} + 102430 T^{6} + 11479 p T^{7} + 2693 p^{2} T^{8} + 306 p^{3} T^{9} + 63 p^{4} T^{10} + 3 p^{5} T^{11} + p^{6} T^{12} \) 6.31.d_cl_lu_dzp_qzn_fvnq
37 \( 1 - 9 T + 178 T^{2} - 1059 T^{3} + 12720 T^{4} - 1529 p T^{5} + 555160 T^{6} - 1529 p^{2} T^{7} + 12720 p^{2} T^{8} - 1059 p^{3} T^{9} + 178 p^{4} T^{10} - 9 p^{5} T^{11} + p^{6} T^{12} \) 6.37.aj_gw_abot_svg_adfrx_bfpgi
41 \( 1 + 10 T + 157 T^{2} + 1279 T^{3} + 10935 T^{4} + 73699 T^{5} + 506486 T^{6} + 73699 p T^{7} + 10935 p^{2} T^{8} + 1279 p^{3} T^{9} + 157 p^{4} T^{10} + 10 p^{5} T^{11} + p^{6} T^{12} \) 6.41.k_gb_bxf_qep_efap_bcvgg
43 \( 1 + 7 T + 103 T^{2} + 646 T^{3} + 8561 T^{4} + 41435 T^{5} + 379878 T^{6} + 41435 p T^{7} + 8561 p^{2} T^{8} + 646 p^{3} T^{9} + 103 p^{4} T^{10} + 7 p^{5} T^{11} + p^{6} T^{12} \) 6.43.h_dz_yw_mrh_cjhr_vpys
47 \( 1 - 3 T + 150 T^{2} - 556 T^{3} + 11471 T^{4} - 48441 T^{5} + 620484 T^{6} - 48441 p T^{7} + 11471 p^{2} T^{8} - 556 p^{3} T^{9} + 150 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \) 6.47.ad_fu_avk_qzf_actrd_bjhwu
53 \( 1 + 34 T + 673 T^{2} + 9205 T^{3} + 99354 T^{4} + 885745 T^{5} + 6893960 T^{6} + 885745 p T^{7} + 99354 p^{2} T^{8} + 9205 p^{3} T^{9} + 673 p^{4} T^{10} + 34 p^{5} T^{11} + p^{6} T^{12} \) 6.53.bi_zx_nqb_fqzi_bykhd_pcgei
59 \( 1 - 18 T + 363 T^{2} - 4735 T^{3} + 54557 T^{4} - 525009 T^{5} + 4321254 T^{6} - 525009 p T^{7} + 54557 p^{2} T^{8} - 4735 p^{3} T^{9} + 363 p^{4} T^{10} - 18 p^{5} T^{11} + p^{6} T^{12} \) 6.59.as_nz_ahad_dcsj_abdwqr_jlwkc
61 \( 1 + 6 T + 211 T^{2} + 1259 T^{3} + 25388 T^{4} + 131889 T^{5} + 1869696 T^{6} + 131889 p T^{7} + 25388 p^{2} T^{8} + 1259 p^{3} T^{9} + 211 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \) 6.61.g_id_bwl_blom_hncr_ecjvk
67 \( 1 - 30 T + 740 T^{2} - 11809 T^{3} + 162064 T^{4} - 1703772 T^{5} + 15675056 T^{6} - 1703772 p T^{7} + 162064 p^{2} T^{8} - 11809 p^{3} T^{9} + 740 p^{4} T^{10} - 30 p^{5} T^{11} + p^{6} T^{12} \) 6.67.abe_bcm_armf_jftg_adsyjs_bihvyu
71 \( 1 + 25 T + 431 T^{2} + 5997 T^{3} + 72041 T^{4} + 733915 T^{5} + 6585800 T^{6} + 733915 p T^{7} + 72041 p^{2} T^{8} + 5997 p^{3} T^{9} + 431 p^{4} T^{10} + 25 p^{5} T^{11} + p^{6} T^{12} \) 6.71.z_qp_iwr_ecov_bptrn_oksia
73 \( 1 - 8 T + 155 T^{2} - 571 T^{3} + 14475 T^{4} - 79121 T^{5} + 1460642 T^{6} - 79121 p T^{7} + 14475 p^{2} T^{8} - 571 p^{3} T^{9} + 155 p^{4} T^{10} - 8 p^{5} T^{11} + p^{6} T^{12} \) 6.73.ai_fz_avz_vkt_aenbd_dfcso
79 \( 1 + 14 T + 497 T^{2} + 5150 T^{3} + 99266 T^{4} + 782862 T^{5} + 10469265 T^{6} + 782862 p T^{7} + 99266 p^{2} T^{8} + 5150 p^{3} T^{9} + 497 p^{4} T^{10} + 14 p^{5} T^{11} + p^{6} T^{12} \) 6.79.o_td_hqc_fqvy_bsocc_wxrcb
83 \( 1 + 3 T + 284 T^{2} + 570 T^{3} + 37533 T^{4} + 51423 T^{5} + 3459660 T^{6} + 51423 p T^{7} + 37533 p^{2} T^{8} + 570 p^{3} T^{9} + 284 p^{4} T^{10} + 3 p^{5} T^{11} + p^{6} T^{12} \) 6.83.d_ky_vy_cdnp_cybv_hovvw
89 \( 1 - 9 T + 243 T^{2} - 2048 T^{3} + 34517 T^{4} - 222087 T^{5} + 3489414 T^{6} - 222087 p T^{7} + 34517 p^{2} T^{8} - 2048 p^{3} T^{9} + 243 p^{4} T^{10} - 9 p^{5} T^{11} + p^{6} T^{12} \) 6.89.aj_jj_adau_bzbp_amqnv_hqnwg
97 \( 1 + 33 T + 696 T^{2} + 9926 T^{3} + 107795 T^{4} + 998285 T^{5} + 9142736 T^{6} + 998285 p T^{7} + 107795 p^{2} T^{8} + 9926 p^{3} T^{9} + 696 p^{4} T^{10} + 33 p^{5} T^{11} + p^{6} T^{12} \) 6.97.bh_bau_oru_gdlz_ceutp_uaets
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.27608318339709332802442930737, −4.96619521187474663857278745745, −4.91575860692598273473156041225, −4.65164368139369922363342303646, −4.64997906628152304156021228745, −4.50662026160972066300423857677, −4.37467083002692643751081247206, −4.03092380493181762078694132977, −3.91651415760222657585094136009, −3.82931995201549427569767071003, −3.63512018845341927191169479876, −3.47897661140699146690325135497, −3.08504240826902237438095875453, −3.04035008426388588827050171328, −2.98752480855989513499665013450, −2.93619655747743901286537484586, −2.61197235922041628247136940884, −2.46628581242647603756142937985, −2.37664918369303415575380890449, −2.12242075868211349248164595892, −2.11055766003328957392923536537, −1.74306625209109335741197101249, −1.20283539314753327514474469330, −1.00918744823386892307723802939, −0.961269476124225048812219442482, 0, 0, 0, 0, 0, 0, 0.961269476124225048812219442482, 1.00918744823386892307723802939, 1.20283539314753327514474469330, 1.74306625209109335741197101249, 2.11055766003328957392923536537, 2.12242075868211349248164595892, 2.37664918369303415575380890449, 2.46628581242647603756142937985, 2.61197235922041628247136940884, 2.93619655747743901286537484586, 2.98752480855989513499665013450, 3.04035008426388588827050171328, 3.08504240826902237438095875453, 3.47897661140699146690325135497, 3.63512018845341927191169479876, 3.82931995201549427569767071003, 3.91651415760222657585094136009, 4.03092380493181762078694132977, 4.37467083002692643751081247206, 4.50662026160972066300423857677, 4.64997906628152304156021228745, 4.65164368139369922363342303646, 4.91575860692598273473156041225, 4.96619521187474663857278745745, 5.27608318339709332802442930737

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.