| L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s + 6·9-s − 8·11-s + 4·13-s + 5·16-s + 12·18-s − 16·22-s + 2·25-s + 8·26-s − 16·31-s + 6·32-s + 18·36-s − 4·41-s − 24·44-s − 14·49-s + 4·50-s + 12·52-s − 12·53-s + 28·61-s − 32·62-s + 7·64-s + 24·72-s + 27·81-s − 8·82-s + 8·83-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.41·8-s + 2·9-s − 2.41·11-s + 1.10·13-s + 5/4·16-s + 2.82·18-s − 3.41·22-s + 2/5·25-s + 1.56·26-s − 2.87·31-s + 1.06·32-s + 3·36-s − 0.624·41-s − 3.61·44-s − 2·49-s + 0.565·50-s + 1.66·52-s − 1.64·53-s + 3.58·61-s − 4.06·62-s + 7/8·64-s + 2.82·72-s + 3·81-s − 0.883·82-s + 0.878·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51076 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51076 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.352874252\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.352874252\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.56148106321288342115959653321, −12.52705491805036900993902506504, −11.30496556292223352835783277564, −11.25927233544557362048783816546, −10.56738073849716309346230716057, −10.35888933863551670885832556900, −9.789874225791298249819900340442, −9.186129281741545725906331388646, −8.129027596445550267391889632932, −8.009190898945144347091161058434, −7.13315295681790457124626290988, −7.07832910723804054651330231723, −6.24062611508485339120063978653, −5.60260353828375197569700597266, −4.92470629433185650636121682668, −4.83288758172427023096362729954, −3.64758202452903894921898714281, −3.57306096681819378549829252385, −2.37644293769007538030921825811, −1.64081282802269209041032077337,
1.64081282802269209041032077337, 2.37644293769007538030921825811, 3.57306096681819378549829252385, 3.64758202452903894921898714281, 4.83288758172427023096362729954, 4.92470629433185650636121682668, 5.60260353828375197569700597266, 6.24062611508485339120063978653, 7.07832910723804054651330231723, 7.13315295681790457124626290988, 8.009190898945144347091161058434, 8.129027596445550267391889632932, 9.186129281741545725906331388646, 9.789874225791298249819900340442, 10.35888933863551670885832556900, 10.56738073849716309346230716057, 11.25927233544557362048783816546, 11.30496556292223352835783277564, 12.52705491805036900993902506504, 12.56148106321288342115959653321