| L(s) = 1 | − 2-s − 1.41i·3-s + 4-s − 2.82i·5-s + 1.41i·6-s − 4·7-s − 8-s + 0.999·9-s + 2.82i·10-s − 1.41i·12-s − 4·13-s + 4·14-s − 4.00·15-s + 16-s + 5.65i·17-s − 0.999·18-s + ⋯ |
| L(s) = 1 | − 0.707·2-s − 0.816i·3-s + 0.5·4-s − 1.26i·5-s + 0.577i·6-s − 1.51·7-s − 0.353·8-s + 0.333·9-s + 0.894i·10-s − 0.408i·12-s − 1.10·13-s + 1.06·14-s − 1.03·15-s + 0.250·16-s + 1.37i·17-s − 0.235·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 226 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.846 + 0.532i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 226 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.846 + 0.532i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.166438 - 0.577568i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.166438 - 0.577568i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + T \) |
| 113 | \( 1 + (-9 + 5.65i)T \) |
| good | 3 | \( 1 + 1.41iT - 3T^{2} \) |
| 5 | \( 1 + 2.82iT - 5T^{2} \) |
| 7 | \( 1 + 4T + 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 17 | \( 1 - 5.65iT - 17T^{2} \) |
| 19 | \( 1 + 4.24iT - 19T^{2} \) |
| 23 | \( 1 + 7.07iT - 23T^{2} \) |
| 29 | \( 1 + 2.82iT - 29T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + 8.48iT - 37T^{2} \) |
| 41 | \( 1 - 12T + 41T^{2} \) |
| 43 | \( 1 - 4.24iT - 43T^{2} \) |
| 47 | \( 1 - 9.89iT - 47T^{2} \) |
| 53 | \( 1 - 12T + 53T^{2} \) |
| 59 | \( 1 + 7.07iT - 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + 4.24iT - 67T^{2} \) |
| 71 | \( 1 - 1.41iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 12.7iT - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 5.65iT - 89T^{2} \) |
| 97 | \( 1 + 10T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.31141079418763191491288505633, −10.70096008605305733963445737444, −9.638314203437256002275773930041, −9.001857723805051246630429721182, −7.87234642956242869761994818953, −6.89257024341965846620786518238, −5.96594262407378662303220721319, −4.31394680844603180552755485570, −2.37442649096191884035668307047, −0.60205853275041224072904327123,
2.74714091808275711222503104768, 3.69535666331519582135264799592, 5.54515067934607623186954799462, 6.95339628049080709813870601373, 7.32351798829068601037656538487, 9.194661205689948471468017094572, 9.910540253202443326284011209513, 10.24724742728993739816746233272, 11.40221014391323909181777223038, 12.42044212405947585736859845485