Properties

Label 8-15e8-1.1-c5e4-0-5
Degree $8$
Conductor $2562890625$
Sign $1$
Analytic cond. $1.69579\times 10^{6}$
Root an. cond. $6.00719$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·4-s + 392·11-s − 523·16-s + 6.36e3·19-s − 7.84e3·29-s − 2.19e3·31-s − 5.55e4·41-s − 1.96e3·44-s + 4.53e4·49-s + 2.39e4·59-s − 4.87e4·61-s + 235·64-s + 1.74e5·71-s − 3.18e4·76-s − 1.30e5·79-s − 1.45e5·89-s − 1.46e5·101-s + 4.59e5·109-s + 3.92e4·116-s − 2.46e5·121-s + 1.09e4·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 0.156·4-s + 0.976·11-s − 0.510·16-s + 4.04·19-s − 1.73·29-s − 0.409·31-s − 5.15·41-s − 0.152·44-s + 2.69·49-s + 0.894·59-s − 1.67·61-s + 0.00717·64-s + 4.11·71-s − 0.631·76-s − 2.36·79-s − 1.94·89-s − 1.43·101-s + 3.70·109-s + 0.270·116-s − 1.53·121-s + 0.0640·124-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.69579\times 10^{6}\)
Root analytic conductor: \(6.00719\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(5.263537876\)
\(L(\frac12)\) \(\approx\) \(5.263537876\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$D_4\times C_2$ \( 1 + 5 T^{2} + 137 p^{2} T^{4} + 5 p^{10} T^{6} + p^{20} T^{8} \)
7$D_4\times C_2$ \( 1 - 45300 T^{2} + 1039412998 T^{4} - 45300 p^{10} T^{6} + p^{20} T^{8} \)
11$D_{4}$ \( ( 1 - 196 T + 181081 T^{2} - 196 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 1296980 T^{2} + 688260462198 T^{4} - 1296980 p^{10} T^{6} + p^{20} T^{8} \)
17$D_4\times C_2$ \( 1 - 2340610 T^{2} + 2927557675523 T^{4} - 2340610 p^{10} T^{6} + p^{20} T^{8} \)
19$D_{4}$ \( ( 1 - 3180 T + 7185073 T^{2} - 3180 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 24511220 T^{2} + 233031884985798 T^{4} - 24511220 p^{10} T^{6} + p^{20} T^{8} \)
29$D_{4}$ \( ( 1 + 3920 T + 44478298 T^{2} + 3920 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 1096 T - 15343894 T^{2} + 1096 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 257567180 T^{2} + 26166130610514198 T^{4} - 257567180 p^{10} T^{6} + p^{20} T^{8} \)
41$D_{4}$ \( ( 1 + 27754 T + 414643531 T^{2} + 27754 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 37863500 T^{2} + 41125859560630998 T^{4} - 37863500 p^{10} T^{6} + p^{20} T^{8} \)
47$D_4\times C_2$ \( 1 - 298326940 T^{2} + 32136931855726598 T^{4} - 298326940 p^{10} T^{6} + p^{20} T^{8} \)
53$D_4\times C_2$ \( 1 - 1240678540 T^{2} + 709794326287792598 T^{4} - 1240678540 p^{10} T^{6} + p^{20} T^{8} \)
59$D_{4}$ \( ( 1 - 11960 T + 1234152598 T^{2} - 11960 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 24396 T + 1596983806 T^{2} + 24396 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 4294993410 T^{2} + 8014205534576787523 T^{4} - 4294993410 p^{10} T^{6} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 - 87296 T + 5453356606 T^{2} - 87296 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 5672940770 T^{2} + 16272726164284201923 T^{4} - 5672940770 p^{10} T^{6} + p^{20} T^{8} \)
79$D_{4}$ \( ( 1 + 65480 T + 5707696298 T^{2} + 65480 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 11381926610 T^{2} + 63038986097658341523 T^{4} - 11381926610 p^{10} T^{6} + p^{20} T^{8} \)
89$D_{4}$ \( ( 1 + 72810 T + 5926578523 T^{2} + 72810 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 11961289340 T^{2} + 68433641741002238598 T^{4} - 11961289340 p^{10} T^{6} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84790651644835155374383816609, −7.72440938581944937335599353887, −7.61298065891296350495504165162, −6.98500188717081961901163137984, −6.93664464903077159493270715862, −6.90763930249913597638688663613, −6.64034694069303821836917608690, −5.97418006161981908271677073890, −5.68837685233168168709218745577, −5.44615516391365637469751392367, −5.27321099110046361834509340222, −5.18786885288904411912424500898, −4.69471675327669928840477821988, −4.16963355513791324110101473087, −4.01552092017270692675135101419, −3.67656684231702198026530066436, −3.18189289056459947679117846628, −3.05989958277197480007175047168, −3.01137345919572233803921218485, −1.90195304862801877968033341289, −1.89730861216422122476503051963, −1.63031512402403091216764594750, −0.997806139958791108548492616526, −0.68530553843649821238219290537, −0.36253687392018965373720377955, 0.36253687392018965373720377955, 0.68530553843649821238219290537, 0.997806139958791108548492616526, 1.63031512402403091216764594750, 1.89730861216422122476503051963, 1.90195304862801877968033341289, 3.01137345919572233803921218485, 3.05989958277197480007175047168, 3.18189289056459947679117846628, 3.67656684231702198026530066436, 4.01552092017270692675135101419, 4.16963355513791324110101473087, 4.69471675327669928840477821988, 5.18786885288904411912424500898, 5.27321099110046361834509340222, 5.44615516391365637469751392367, 5.68837685233168168709218745577, 5.97418006161981908271677073890, 6.64034694069303821836917608690, 6.90763930249913597638688663613, 6.93664464903077159493270715862, 6.98500188717081961901163137984, 7.61298065891296350495504165162, 7.72440938581944937335599353887, 7.84790651644835155374383816609

Graph of the $Z$-function along the critical line