Properties

Label 2-15e2-25.21-c3-0-2
Degree $2$
Conductor $225$
Sign $-0.588 + 0.808i$
Analytic cond. $13.2754$
Root an. cond. $3.64354$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.626 + 1.92i)2-s + (3.14 + 2.28i)4-s + (−3.12 + 10.7i)5-s − 16.4·7-s + (−19.4 + 14.1i)8-s + (−18.7 − 12.7i)10-s + (−1.41 + 4.34i)11-s + (−17.0 − 52.4i)13-s + (10.2 − 31.6i)14-s + (−5.47 − 16.8i)16-s + (−1.72 + 1.25i)17-s + (22.2 − 16.1i)19-s + (−34.3 + 26.6i)20-s + (−7.48 − 5.43i)22-s + (−30.4 + 93.5i)23-s + ⋯
L(s)  = 1  + (−0.221 + 0.681i)2-s + (0.393 + 0.285i)4-s + (−0.279 + 0.960i)5-s − 0.887·7-s + (−0.861 + 0.626i)8-s + (−0.592 − 0.402i)10-s + (−0.0386 + 0.119i)11-s + (−0.363 − 1.11i)13-s + (0.196 − 0.605i)14-s + (−0.0855 − 0.263i)16-s + (−0.0246 + 0.0179i)17-s + (0.268 − 0.194i)19-s + (−0.384 + 0.298i)20-s + (−0.0725 − 0.0527i)22-s + (−0.275 + 0.848i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.588 + 0.808i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.588 + 0.808i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.588 + 0.808i$
Analytic conductor: \(13.2754\)
Root analytic conductor: \(3.64354\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (46, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :3/2),\ -0.588 + 0.808i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.212264 - 0.416977i\)
\(L(\frac12)\) \(\approx\) \(0.212264 - 0.416977i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (3.12 - 10.7i)T \)
good2 \( 1 + (0.626 - 1.92i)T + (-6.47 - 4.70i)T^{2} \)
7 \( 1 + 16.4T + 343T^{2} \)
11 \( 1 + (1.41 - 4.34i)T + (-1.07e3 - 782. i)T^{2} \)
13 \( 1 + (17.0 + 52.4i)T + (-1.77e3 + 1.29e3i)T^{2} \)
17 \( 1 + (1.72 - 1.25i)T + (1.51e3 - 4.67e3i)T^{2} \)
19 \( 1 + (-22.2 + 16.1i)T + (2.11e3 - 6.52e3i)T^{2} \)
23 \( 1 + (30.4 - 93.5i)T + (-9.84e3 - 7.15e3i)T^{2} \)
29 \( 1 + (-2.70 - 1.96i)T + (7.53e3 + 2.31e4i)T^{2} \)
31 \( 1 + (-54.6 + 39.6i)T + (9.20e3 - 2.83e4i)T^{2} \)
37 \( 1 + (56.4 + 173. i)T + (-4.09e4 + 2.97e4i)T^{2} \)
41 \( 1 + (-11.7 - 36.2i)T + (-5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 + 252.T + 7.95e4T^{2} \)
47 \( 1 + (35.6 + 25.9i)T + (3.20e4 + 9.87e4i)T^{2} \)
53 \( 1 + (163. + 119. i)T + (4.60e4 + 1.41e5i)T^{2} \)
59 \( 1 + (-36.4 - 112. i)T + (-1.66e5 + 1.20e5i)T^{2} \)
61 \( 1 + (248. - 763. i)T + (-1.83e5 - 1.33e5i)T^{2} \)
67 \( 1 + (-523. + 380. i)T + (9.29e4 - 2.86e5i)T^{2} \)
71 \( 1 + (798. + 580. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (256. - 790. i)T + (-3.14e5 - 2.28e5i)T^{2} \)
79 \( 1 + (-822. - 597. i)T + (1.52e5 + 4.68e5i)T^{2} \)
83 \( 1 + (926. - 673. i)T + (1.76e5 - 5.43e5i)T^{2} \)
89 \( 1 + (349. - 1.07e3i)T + (-5.70e5 - 4.14e5i)T^{2} \)
97 \( 1 + (-457. - 332. i)T + (2.82e5 + 8.68e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.34209783399219645567205995763, −11.46612452913854594171358638636, −10.44387469527345556493412024698, −9.511141240501878605009645000930, −8.134533889478604554484665022719, −7.35619213332734184462341968984, −6.54382603469615926759774819739, −5.56614060537540131497194258000, −3.53507112433546230218710094075, −2.64256545950559556718579446759, 0.19311886422721754163099770193, 1.70810121758025318503501713216, 3.21840611796127321146577800157, 4.60032564846168128633599581008, 6.04625608421563602972376612469, 6.99421933834055183980472928044, 8.477140189742609049068828106324, 9.447099137775718807107072626525, 10.07238931892817189216088724605, 11.30936415307538653127285599582

Graph of the $Z$-function along the critical line