Properties

Label 2-15e2-25.21-c3-0-33
Degree $2$
Conductor $225$
Sign $-0.588 + 0.808i$
Analytic cond. $13.2754$
Root an. cond. $3.64354$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.626 − 1.92i)2-s + (3.14 + 2.28i)4-s + (3.12 − 10.7i)5-s − 16.4·7-s + (19.4 − 14.1i)8-s + (−18.7 − 12.7i)10-s + (1.41 − 4.34i)11-s + (−17.0 − 52.4i)13-s + (−10.2 + 31.6i)14-s + (−5.47 − 16.8i)16-s + (1.72 − 1.25i)17-s + (22.2 − 16.1i)19-s + (34.3 − 26.6i)20-s + (−7.48 − 5.43i)22-s + (30.4 − 93.5i)23-s + ⋯
L(s)  = 1  + (0.221 − 0.681i)2-s + (0.393 + 0.285i)4-s + (0.279 − 0.960i)5-s − 0.887·7-s + (0.861 − 0.626i)8-s + (−0.592 − 0.402i)10-s + (0.0386 − 0.119i)11-s + (−0.363 − 1.11i)13-s + (−0.196 + 0.605i)14-s + (−0.0855 − 0.263i)16-s + (0.0246 − 0.0179i)17-s + (0.268 − 0.194i)19-s + (0.384 − 0.298i)20-s + (−0.0725 − 0.0527i)22-s + (0.275 − 0.848i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.588 + 0.808i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.588 + 0.808i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.588 + 0.808i$
Analytic conductor: \(13.2754\)
Root analytic conductor: \(3.64354\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (46, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :3/2),\ -0.588 + 0.808i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.905031 - 1.77786i\)
\(L(\frac12)\) \(\approx\) \(0.905031 - 1.77786i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-3.12 + 10.7i)T \)
good2 \( 1 + (-0.626 + 1.92i)T + (-6.47 - 4.70i)T^{2} \)
7 \( 1 + 16.4T + 343T^{2} \)
11 \( 1 + (-1.41 + 4.34i)T + (-1.07e3 - 782. i)T^{2} \)
13 \( 1 + (17.0 + 52.4i)T + (-1.77e3 + 1.29e3i)T^{2} \)
17 \( 1 + (-1.72 + 1.25i)T + (1.51e3 - 4.67e3i)T^{2} \)
19 \( 1 + (-22.2 + 16.1i)T + (2.11e3 - 6.52e3i)T^{2} \)
23 \( 1 + (-30.4 + 93.5i)T + (-9.84e3 - 7.15e3i)T^{2} \)
29 \( 1 + (2.70 + 1.96i)T + (7.53e3 + 2.31e4i)T^{2} \)
31 \( 1 + (-54.6 + 39.6i)T + (9.20e3 - 2.83e4i)T^{2} \)
37 \( 1 + (56.4 + 173. i)T + (-4.09e4 + 2.97e4i)T^{2} \)
41 \( 1 + (11.7 + 36.2i)T + (-5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 + 252.T + 7.95e4T^{2} \)
47 \( 1 + (-35.6 - 25.9i)T + (3.20e4 + 9.87e4i)T^{2} \)
53 \( 1 + (-163. - 119. i)T + (4.60e4 + 1.41e5i)T^{2} \)
59 \( 1 + (36.4 + 112. i)T + (-1.66e5 + 1.20e5i)T^{2} \)
61 \( 1 + (248. - 763. i)T + (-1.83e5 - 1.33e5i)T^{2} \)
67 \( 1 + (-523. + 380. i)T + (9.29e4 - 2.86e5i)T^{2} \)
71 \( 1 + (-798. - 580. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (256. - 790. i)T + (-3.14e5 - 2.28e5i)T^{2} \)
79 \( 1 + (-822. - 597. i)T + (1.52e5 + 4.68e5i)T^{2} \)
83 \( 1 + (-926. + 673. i)T + (1.76e5 - 5.43e5i)T^{2} \)
89 \( 1 + (-349. + 1.07e3i)T + (-5.70e5 - 4.14e5i)T^{2} \)
97 \( 1 + (-457. - 332. i)T + (2.82e5 + 8.68e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64220004252767013290836072631, −10.46795201742487937778743583534, −9.751394521666883618516241595954, −8.583498751636765359633232426955, −7.46712044947569818626795389558, −6.24223384352248283250893711457, −4.96855282456264237702439546587, −3.61421469179315300196325582066, −2.44248455446378461882824082611, −0.74906893116458237828877667408, 1.96158774434518291132192230721, 3.38119536389337596486102898373, 5.05452183149533987545343734346, 6.34453778286704020585413687180, 6.77327726716246141470106858792, 7.76726008287614647068677968586, 9.397929500577443838798197583260, 10.14216922154138931868068274434, 11.15151045971947176937732895634, 12.01321379618311926796574435839

Graph of the $Z$-function along the critical line