Properties

Label 2-15e2-25.11-c3-0-15
Degree $2$
Conductor $225$
Sign $0.674 - 0.737i$
Analytic cond. $13.2754$
Root an. cond. $3.64354$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.109 + 0.0793i)2-s + (−2.46 + 7.59i)4-s + (6.22 − 9.28i)5-s − 17.3·7-s + (−0.666 − 2.05i)8-s + (0.0573 + 1.50i)10-s + (34.1 − 24.7i)11-s + (68.3 + 49.6i)13-s + (1.89 − 1.37i)14-s + (−51.4 − 37.3i)16-s + (13.9 + 42.8i)17-s + (25.8 + 79.5i)19-s + (55.1 + 70.1i)20-s + (−1.75 + 5.41i)22-s + (16.9 − 12.3i)23-s + ⋯
L(s)  = 1  + (−0.0386 + 0.0280i)2-s + (−0.308 + 0.948i)4-s + (0.556 − 0.830i)5-s − 0.934·7-s + (−0.0294 − 0.0906i)8-s + (0.00181 + 0.0476i)10-s + (0.934 − 0.679i)11-s + (1.45 + 1.05i)13-s + (0.0360 − 0.0262i)14-s + (−0.803 − 0.583i)16-s + (0.198 + 0.611i)17-s + (0.312 + 0.960i)19-s + (0.616 + 0.784i)20-s + (−0.0170 + 0.0524i)22-s + (0.153 − 0.111i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.674 - 0.737i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.674 - 0.737i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $0.674 - 0.737i$
Analytic conductor: \(13.2754\)
Root analytic conductor: \(3.64354\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (136, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :3/2),\ 0.674 - 0.737i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.55134 + 0.683490i\)
\(L(\frac12)\) \(\approx\) \(1.55134 + 0.683490i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-6.22 + 9.28i)T \)
good2 \( 1 + (0.109 - 0.0793i)T + (2.47 - 7.60i)T^{2} \)
7 \( 1 + 17.3T + 343T^{2} \)
11 \( 1 + (-34.1 + 24.7i)T + (411. - 1.26e3i)T^{2} \)
13 \( 1 + (-68.3 - 49.6i)T + (678. + 2.08e3i)T^{2} \)
17 \( 1 + (-13.9 - 42.8i)T + (-3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (-25.8 - 79.5i)T + (-5.54e3 + 4.03e3i)T^{2} \)
23 \( 1 + (-16.9 + 12.3i)T + (3.75e3 - 1.15e4i)T^{2} \)
29 \( 1 + (68.0 - 209. i)T + (-1.97e4 - 1.43e4i)T^{2} \)
31 \( 1 + (-49.5 - 152. i)T + (-2.41e4 + 1.75e4i)T^{2} \)
37 \( 1 + (-212. - 154. i)T + (1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (-331. - 241. i)T + (2.12e4 + 6.55e4i)T^{2} \)
43 \( 1 - 290.T + 7.95e4T^{2} \)
47 \( 1 + (-142. + 438. i)T + (-8.39e4 - 6.10e4i)T^{2} \)
53 \( 1 + (-44.0 + 135. i)T + (-1.20e5 - 8.75e4i)T^{2} \)
59 \( 1 + (382. + 277. i)T + (6.34e4 + 1.95e5i)T^{2} \)
61 \( 1 + (43.7 - 31.7i)T + (7.01e4 - 2.15e5i)T^{2} \)
67 \( 1 + (-139. - 427. i)T + (-2.43e5 + 1.76e5i)T^{2} \)
71 \( 1 + (-193. + 595. i)T + (-2.89e5 - 2.10e5i)T^{2} \)
73 \( 1 + (39.4 - 28.6i)T + (1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (200. - 615. i)T + (-3.98e5 - 2.89e5i)T^{2} \)
83 \( 1 + (206. + 637. i)T + (-4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 + (700. - 509. i)T + (2.17e5 - 6.70e5i)T^{2} \)
97 \( 1 + (54.7 - 168. i)T + (-7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.15671370857237155904796308245, −11.09666638834958101815815391741, −9.637852537651459743852757167103, −8.934411074901456073300237444543, −8.283736057942333214791529551630, −6.70705311834590479510239007362, −5.88660902773021118806626873653, −4.21151830071040823933350590906, −3.36020675777608409590039025157, −1.29632242523553436299755543699, 0.861828291890393950605054734939, 2.62272324455015365400409580174, 4.07879628006360119977916375979, 5.79722973136111046050003459948, 6.26673668809570775255726215414, 7.45736063881975691253346143640, 9.275447509109960793122219570070, 9.561213150637066437797284826229, 10.66732620993889436228915235002, 11.34889011977846163149781584423

Graph of the $Z$-function along the critical line