Properties

Label 4-15e4-1.1-c1e2-0-1
Degree $4$
Conductor $50625$
Sign $1$
Analytic cond. $3.22789$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 3·16-s + 8·19-s + 16·31-s − 14·49-s + 4·61-s − 7·64-s + 8·76-s + 32·79-s − 28·109-s − 22·121-s + 16·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 26·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 1/2·4-s − 3/4·16-s + 1.83·19-s + 2.87·31-s − 2·49-s + 0.512·61-s − 7/8·64-s + 0.917·76-s + 3.60·79-s − 2.68·109-s − 2·121-s + 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(50625\)    =    \(3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(3.22789\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 50625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.575014416\)
\(L(\frac12)\) \(\approx\) \(1.575014416\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 154 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.24585028390759671322413107395, −11.84398909630952371043332939468, −11.74690789160613403410368998186, −11.05294965077240898604675348140, −10.65259519130546393506529691558, −10.04198369538576760343525987751, −9.427181850360461378258420474759, −9.397005801557129385093236827331, −8.361638436707407037404732372865, −8.058574380337454448787468535229, −7.54293240984768091665500147012, −6.76301274587898694338444462086, −6.55428878104586497175311860571, −5.88368349574315693264548254986, −5.01672023245190115764283599751, −4.75691278882402142163935293995, −3.76993668551353217309528527282, −3.02477398985994833328267227345, −2.39073745840140963186525318063, −1.17988259436947085351712516811, 1.17988259436947085351712516811, 2.39073745840140963186525318063, 3.02477398985994833328267227345, 3.76993668551353217309528527282, 4.75691278882402142163935293995, 5.01672023245190115764283599751, 5.88368349574315693264548254986, 6.55428878104586497175311860571, 6.76301274587898694338444462086, 7.54293240984768091665500147012, 8.058574380337454448787468535229, 8.361638436707407037404732372865, 9.397005801557129385093236827331, 9.427181850360461378258420474759, 10.04198369538576760343525987751, 10.65259519130546393506529691558, 11.05294965077240898604675348140, 11.74690789160613403410368998186, 11.84398909630952371043332939468, 12.24585028390759671322413107395

Graph of the $Z$-function along the critical line