Properties

Label 8-2240e4-1.1-c1e4-0-11
Degree $8$
Conductor $2.518\times 10^{13}$
Sign $1$
Analytic cond. $102352.$
Root an. cond. $4.22924$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 4·9-s + 8·13-s + 10·25-s − 16·45-s + 10·49-s + 40·61-s − 32·65-s − 6·81-s − 24·101-s + 72·113-s + 32·117-s − 44·121-s − 20·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 12·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1.78·5-s + 4/3·9-s + 2.21·13-s + 2·25-s − 2.38·45-s + 10/7·49-s + 5.12·61-s − 3.96·65-s − 2/3·81-s − 2.38·101-s + 6.77·113-s + 2.95·117-s − 4·121-s − 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(102352.\)
Root analytic conductor: \(4.22924\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.851139991\)
\(L(\frac12)\) \(\approx\) \(3.851139991\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{4} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
good3$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 106 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 170 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.63874126583953474137638714554, −6.14609225243367641491575890041, −6.00865218586950210771019641746, −5.75748705926315709846008956760, −5.72949131297237132898875317395, −5.35435712921148155507260270821, −5.05321482325895381641460440560, −4.85717089262030699813111390975, −4.75656397615886530480565881498, −4.45567589124835971058304903796, −4.08296959178421843427406268782, −3.94264044781964025811498683169, −3.84201259040925531503723434117, −3.77318123122163781428604160620, −3.48567451272554307192641393452, −3.35346738865673206052105529074, −2.72279334321926800202505893963, −2.70343574448862352249166765533, −2.42747041817067414949177692748, −2.01307209535874782893143414303, −1.62660092821968019710734016055, −1.32349232062296915615677684455, −1.08102658257922224359603649971, −0.73735364301492171204219814332, −0.41918521850967959061770407948, 0.41918521850967959061770407948, 0.73735364301492171204219814332, 1.08102658257922224359603649971, 1.32349232062296915615677684455, 1.62660092821968019710734016055, 2.01307209535874782893143414303, 2.42747041817067414949177692748, 2.70343574448862352249166765533, 2.72279334321926800202505893963, 3.35346738865673206052105529074, 3.48567451272554307192641393452, 3.77318123122163781428604160620, 3.84201259040925531503723434117, 3.94264044781964025811498683169, 4.08296959178421843427406268782, 4.45567589124835971058304903796, 4.75656397615886530480565881498, 4.85717089262030699813111390975, 5.05321482325895381641460440560, 5.35435712921148155507260270821, 5.72949131297237132898875317395, 5.75748705926315709846008956760, 6.00865218586950210771019641746, 6.14609225243367641491575890041, 6.63874126583953474137638714554

Graph of the $Z$-function along the critical line