# Properties

 Degree 2 Conductor $2^{5} \cdot 7$ Sign $0.487 + 0.872i$ Motivic weight 2 Primitive yes Self-dual no Analytic rank 0

# Related objects

## Dirichlet series

 L(s)  = 1 + (0.125 + 1.99i)2-s + (−3.96 + 0.5i)4-s + (−4.94 − 4.94i)7-s + (−1.49 − 7.85i)8-s + (6.36 − 6.36i)9-s + (−15.9 − 6.60i)11-s + (9.26 − 10.5i)14-s + (15.5 − 3.96i)16-s + (13.5 + 11.9i)18-s + (11.1 − 32.6i)22-s + (12.1 − 12.1i)23-s + (−17.6 − 17.6i)25-s + (22.1 + 17.1i)28-s + (−1.02 + 0.424i)29-s + (9.86 + 30.4i)32-s + ⋯
 L(s)  = 1 + (0.0626 + 0.998i)2-s + (−0.992 + 0.125i)4-s + (−0.707 − 0.707i)7-s + (−0.186 − 0.982i)8-s + (0.707 − 0.707i)9-s + (−1.44 − 0.600i)11-s + (0.661 − 0.750i)14-s + (0.968 − 0.248i)16-s + (0.750 + 0.661i)18-s + (0.508 − 1.48i)22-s + (0.528 − 0.528i)23-s + (−0.707 − 0.707i)25-s + (0.789 + 0.613i)28-s + (−0.0353 + 0.0146i)29-s + (0.308 + 0.951i)32-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.487 + 0.872i)\, \overline{\Lambda}(3-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.487 + 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$224$$    =    $$2^{5} \cdot 7$$ $$\varepsilon$$ = $0.487 + 0.872i$ motivic weight = $$2$$ character : $\chi_{224} (181, \cdot )$ primitive : yes self-dual : no analytic rank = $$0$$ Selberg data = $$(2,\ 224,\ (\ :1),\ 0.487 + 0.872i)$$ $$L(\frac{3}{2})$$ $$\approx$$ $$0.648894 - 0.380689i$$ $$L(\frac12)$$ $$\approx$$ $$0.648894 - 0.380689i$$ $$L(2)$$ not available $$L(1)$$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$where, for $p \notin \{2,\;7\}$,$$F_p(T)$$ is a polynomial of degree 2. If $p \in \{2,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 $$1 + (-0.125 - 1.99i)T$$
7 $$1 + (4.94 + 4.94i)T$$
good3 $$1 + (-6.36 + 6.36i)T^{2}$$
5 $$1 + (17.6 + 17.6i)T^{2}$$
11 $$1 + (15.9 + 6.60i)T + (85.5 + 85.5i)T^{2}$$
13 $$1 + (119. - 119. i)T^{2}$$
17 $$1 + 289T^{2}$$
19 $$1 + (255. - 255. i)T^{2}$$
23 $$1 + (-12.1 + 12.1i)T - 529iT^{2}$$
29 $$1 + (1.02 - 0.424i)T + (594. - 594. i)T^{2}$$
31 $$1 - 961T^{2}$$
37 $$1 + (-4.13 + 9.98i)T + (-968. - 968. i)T^{2}$$
41 $$1 + 1.68e3iT^{2}$$
43 $$1 + (71.9 + 29.8i)T + (1.30e3 + 1.30e3i)T^{2}$$
47 $$1 + 2.20e3T^{2}$$
53 $$1 + (-42.5 - 17.6i)T + (1.98e3 + 1.98e3i)T^{2}$$
59 $$1 + (2.46e3 + 2.46e3i)T^{2}$$
61 $$1 + (-2.63e3 + 2.63e3i)T^{2}$$
67 $$1 + (78.2 - 32.4i)T + (3.17e3 - 3.17e3i)T^{2}$$
71 $$1 + (59.8 + 59.8i)T + 5.04e3iT^{2}$$
73 $$1 + 5.32e3iT^{2}$$
79 $$1 + 23.3iT - 6.24e3T^{2}$$
83 $$1 + (4.87e3 - 4.87e3i)T^{2}$$
89 $$1 - 7.92e3iT^{2}$$
97 $$1 - 9.40e3T^{2}$$
show less
\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}

## Imaginary part of the first few zeros on the critical line

−12.19553317253624494142732979385, −10.52394983674406398763184555506, −9.897987526494636909810255760086, −8.745618039077534390583994723315, −7.67439292378974322935058394773, −6.81205442811634421860088437260, −5.81870930452265543576691763452, −4.50614807743334454131192218755, −3.30547028396814748049010646527, −0.39628387631228295883303581626, 1.97881038624140451074088826742, 3.16097539221147259327103074883, 4.71807783612912724964773627436, 5.61539814466611701251673560671, 7.34192557039458790907914437520, 8.415151474246194817512860635872, 9.660027849655339342706564361692, 10.17943306257337627746410008208, 11.21670413430389434035646709861, 12.24887919947692616509894018939