Properties

Degree 2
Conductor $ 2^{5} \cdot 7 $
Sign $-0.372 - 0.927i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.824 − 1.42i)3-s + (−3.95 + 2.28i)5-s + (−6.75 − 1.83i)7-s + (3.14 + 5.43i)9-s + (−6.18 + 10.7i)11-s + 18.3i·13-s + 7.52i·15-s + (6.51 − 11.2i)17-s + (−1.51 − 2.61i)19-s + (−8.18 + 8.13i)21-s + (−26.2 + 15.1i)23-s + (−2.09 + 3.63i)25-s + 25.1·27-s − 22.7i·29-s + (19.5 + 11.2i)31-s + ⋯
L(s)  = 1  + (0.274 − 0.475i)3-s + (−0.790 + 0.456i)5-s + (−0.965 − 0.262i)7-s + (0.348 + 0.604i)9-s + (−0.562 + 0.974i)11-s + 1.41i·13-s + 0.501i·15-s + (0.383 − 0.663i)17-s + (−0.0796 − 0.137i)19-s + (−0.389 + 0.387i)21-s + (−1.14 + 0.659i)23-s + (−0.0839 + 0.145i)25-s + 0.933·27-s − 0.785i·29-s + (0.630 + 0.363i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.372 - 0.927i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.372 - 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(224\)    =    \(2^{5} \cdot 7\)
\( \varepsilon \)  =  $-0.372 - 0.927i$
motivic weight  =  \(2\)
character  :  $\chi_{224} (207, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 224,\ (\ :1),\ -0.372 - 0.927i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(0.431770 + 0.638740i\)
\(L(\frac12)\)  \(\approx\)  \(0.431770 + 0.638740i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (6.75 + 1.83i)T \)
good3 \( 1 + (-0.824 + 1.42i)T + (-4.5 - 7.79i)T^{2} \)
5 \( 1 + (3.95 - 2.28i)T + (12.5 - 21.6i)T^{2} \)
11 \( 1 + (6.18 - 10.7i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 - 18.3iT - 169T^{2} \)
17 \( 1 + (-6.51 + 11.2i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (1.51 + 2.61i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (26.2 - 15.1i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 + 22.7iT - 841T^{2} \)
31 \( 1 + (-19.5 - 11.2i)T + (480.5 + 832. i)T^{2} \)
37 \( 1 + (11.9 - 6.88i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 + 60.5T + 1.68e3T^{2} \)
43 \( 1 + 39.0T + 1.84e3T^{2} \)
47 \( 1 + (17.6 - 10.1i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + (4.12 + 2.38i)T + (1.40e3 + 2.43e3i)T^{2} \)
59 \( 1 + (-5.86 + 10.1i)T + (-1.74e3 - 3.01e3i)T^{2} \)
61 \( 1 + (-94.3 + 54.4i)T + (1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (39.5 - 68.5i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + 12.9iT - 5.04e3T^{2} \)
73 \( 1 + (-49.2 + 85.3i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-113. + 65.6i)T + (3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + 28.3T + 6.88e3T^{2} \)
89 \( 1 + (-78.7 - 136. i)T + (-3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + 39.6T + 9.40e3T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.24564429478071725918400603104, −11.57365659357705096198145406102, −10.25364140606231212334045463284, −9.574848436142352053332395845468, −8.095489078670618268215146287371, −7.26169964692311829009258842314, −6.61601079661354550612601657206, −4.80254069212540332949061695308, −3.57463403513901454153848840201, −2.09353513736377760644131254398, 0.39435241098187786492668510456, 3.10675666968619845541959213014, 3.89643372259910247924388276240, 5.42830545130683436811725986498, 6.52566571745515324222600154978, 8.086774298203755838986279543025, 8.580304442155266829627592200135, 9.942686841220999608888616604698, 10.47953111119999670371036033743, 11.95086174972221819959335578370

Graph of the $Z$-function along the critical line