Properties

Degree 2
Conductor $ 2^{5} \cdot 7 $
Sign $0.197 - 0.980i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)3-s + (−0.5 + 0.866i)5-s + i·7-s + (0.866 − 0.5i)11-s − 0.999i·15-s + (−0.5 − 0.866i)17-s + (0.866 + 0.5i)19-s + (−0.5 − 0.866i)21-s + (−0.866 − 0.5i)23-s i·27-s + (0.866 − 0.5i)31-s + (−0.499 + 0.866i)33-s + (−0.866 − 0.5i)35-s + (0.5 − 0.866i)37-s + (0.866 + 0.5i)47-s + ⋯
L(s)  = 1  + (−0.866 + 0.5i)3-s + (−0.5 + 0.866i)5-s + i·7-s + (0.866 − 0.5i)11-s − 0.999i·15-s + (−0.5 − 0.866i)17-s + (0.866 + 0.5i)19-s + (−0.5 − 0.866i)21-s + (−0.866 − 0.5i)23-s i·27-s + (0.866 − 0.5i)31-s + (−0.499 + 0.866i)33-s + (−0.866 − 0.5i)35-s + (0.5 − 0.866i)37-s + (0.866 + 0.5i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.197 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.197 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(224\)    =    \(2^{5} \cdot 7\)
\( \varepsilon \)  =  $0.197 - 0.980i$
motivic weight  =  \(0\)
character  :  $\chi_{224} (191, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 224,\ (\ :0),\ 0.197 - 0.980i)\)
\(L(\frac{1}{2})\)  \(\approx\)  \(0.5239175543\)
\(L(\frac12)\)  \(\approx\)  \(0.5239175543\)
\(L(1)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - iT \)
good3 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
5 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
13 \( 1 + T^{2} \)
17 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
19 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
23 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
37 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
53 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
59 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
79 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
97 \( 1 + T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.22709351788053490089647162831, −11.59600633154743071325789949495, −11.04069787765799055771426984236, −9.938035774668620069351885346279, −8.897422967595805715172683466262, −7.64951924974791220569551434192, −6.37343180237093145708937355264, −5.57705880420581847333263358842, −4.23739228702478708277672850209, −2.76788953705767214556321314744, 1.18115060432250576025081445514, 3.85082022785688915825160501435, 4.86158159448459267204310288019, 6.25005304233019844508058994269, 7.10972948766242002299187214914, 8.215630286176052104965475202038, 9.362546294717732787608098910988, 10.50254038799050942186063146748, 11.64190753115410579160223473130, 12.08799371505284644134280319916

Graph of the $Z$-function along the critical line