Properties

Label 4-2205e2-1.1-c1e2-0-2
Degree $4$
Conductor $4862025$
Sign $1$
Analytic cond. $310.006$
Root an. cond. $4.19607$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 6·11-s − 4·16-s + 11·25-s − 10·29-s − 4·31-s + 4·41-s − 24·55-s − 20·59-s + 16·61-s + 16·71-s + 10·79-s + 16·80-s + 24·101-s − 10·109-s + 5·121-s − 24·125-s + 127-s + 131-s + 137-s + 139-s + 40·145-s + 149-s + 151-s + 16·155-s + 157-s + 163-s + ⋯
L(s)  = 1  − 1.78·5-s + 1.80·11-s − 16-s + 11/5·25-s − 1.85·29-s − 0.718·31-s + 0.624·41-s − 3.23·55-s − 2.60·59-s + 2.04·61-s + 1.89·71-s + 1.12·79-s + 1.78·80-s + 2.38·101-s − 0.957·109-s + 5/11·121-s − 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3.32·145-s + 0.0819·149-s + 0.0813·151-s + 1.28·155-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4862025\)    =    \(3^{4} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(310.006\)
Root analytic conductor: \(4.19607\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4862025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.113187250\)
\(L(\frac12)\) \(\approx\) \(1.113187250\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 + 4 T + p T^{2} \)
7 \( 1 \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 145 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.185610466549716491373020878880, −8.914934077267715540340110292735, −8.477273678864461927943954032713, −8.068685431207513119463679726820, −7.60266642484173485727207332162, −7.43150220908455889732865608073, −6.86755711341955704127462141106, −6.71667020116760375332818104541, −6.25198238806270656338770498791, −5.70423934370409127827477889760, −5.22465016424296750935251716651, −4.50249991809603940604306611287, −4.50225760153827742349036908171, −3.84792394606019716450782592531, −3.55407865366965380939059433745, −3.35402035934725302253072320882, −2.41005433314244717753056632276, −1.91245704080113068690707135803, −1.15704039761806755584204998752, −0.41304973719446752448514052961, 0.41304973719446752448514052961, 1.15704039761806755584204998752, 1.91245704080113068690707135803, 2.41005433314244717753056632276, 3.35402035934725302253072320882, 3.55407865366965380939059433745, 3.84792394606019716450782592531, 4.50225760153827742349036908171, 4.50249991809603940604306611287, 5.22465016424296750935251716651, 5.70423934370409127827477889760, 6.25198238806270656338770498791, 6.71667020116760375332818104541, 6.86755711341955704127462141106, 7.43150220908455889732865608073, 7.60266642484173485727207332162, 8.068685431207513119463679726820, 8.477273678864461927943954032713, 8.914934077267715540340110292735, 9.185610466549716491373020878880

Graph of the $Z$-function along the critical line