Properties

Label 4-2205e2-1.1-c1e2-0-7
Degree $4$
Conductor $4862025$
Sign $1$
Analytic cond. $310.006$
Root an. cond. $4.19607$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 2·5-s + 4·8-s − 4·10-s + 2·11-s + 8·13-s + 8·16-s − 10·17-s + 2·19-s − 4·20-s + 4·22-s + 6·23-s + 3·25-s + 16·26-s − 2·29-s + 6·31-s + 8·32-s − 20·34-s + 4·37-s + 4·38-s − 8·40-s − 2·41-s − 4·43-s + 4·44-s + 12·46-s − 4·47-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 0.894·5-s + 1.41·8-s − 1.26·10-s + 0.603·11-s + 2.21·13-s + 2·16-s − 2.42·17-s + 0.458·19-s − 0.894·20-s + 0.852·22-s + 1.25·23-s + 3/5·25-s + 3.13·26-s − 0.371·29-s + 1.07·31-s + 1.41·32-s − 3.42·34-s + 0.657·37-s + 0.648·38-s − 1.26·40-s − 0.312·41-s − 0.609·43-s + 0.603·44-s + 1.76·46-s − 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4862025\)    =    \(3^{4} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(310.006\)
Root analytic conductor: \(4.19607\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4862025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.091532824\)
\(L(\frac12)\) \(\approx\) \(6.091532824\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
7 \( 1 \)
good2$C_2^2$ \( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 2 T + 20 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 8 T + 3 p T^{2} - 8 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 10 T + 56 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 2 T + 27 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 6 T + 52 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 2 T + 32 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 6 T + 59 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 4 T + 51 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 2 T + 80 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T + 63 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
53$D_{4}$ \( 1 + 4 T + 2 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 10 T + 116 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
67$D_{4}$ \( 1 + 12 T + 95 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 2 T + 116 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 8 T + 87 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 6 T + 59 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 6 T + 40 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 16 T + 210 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.942765442895249633243179848159, −8.856626119033657402942021422640, −8.551673257961172393688433083216, −7.934143389558448207026804335539, −7.73787208501959780982677005941, −7.17006836423974039603091920964, −6.69304689638824678908000491965, −6.54098959762751938422260283484, −6.11815815165238951394572438151, −5.71365542842930466343236736977, −4.92676084689245965889564072181, −4.84393372257600961888642322455, −4.28490138845435264442344354248, −4.15585111569565795210609654941, −3.49182043444019856818942444692, −3.35453262065369419049874150601, −2.73384196480876704249664549308, −1.89817116903868295491057521179, −1.42328622967406263087918345191, −0.72700534850424245923582315910, 0.72700534850424245923582315910, 1.42328622967406263087918345191, 1.89817116903868295491057521179, 2.73384196480876704249664549308, 3.35453262065369419049874150601, 3.49182043444019856818942444692, 4.15585111569565795210609654941, 4.28490138845435264442344354248, 4.84393372257600961888642322455, 4.92676084689245965889564072181, 5.71365542842930466343236736977, 6.11815815165238951394572438151, 6.54098959762751938422260283484, 6.69304689638824678908000491965, 7.17006836423974039603091920964, 7.73787208501959780982677005941, 7.934143389558448207026804335539, 8.551673257961172393688433083216, 8.856626119033657402942021422640, 8.942765442895249633243179848159

Graph of the $Z$-function along the critical line