Properties

Label 4-2205e2-1.1-c1e2-0-11
Degree $4$
Conductor $4862025$
Sign $1$
Analytic cond. $310.006$
Root an. cond. $4.19607$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 2·5-s + 4·8-s + 4·10-s + 2·11-s − 8·13-s + 8·16-s + 10·17-s − 2·19-s + 4·20-s + 4·22-s + 6·23-s + 3·25-s − 16·26-s − 2·29-s − 6·31-s + 8·32-s + 20·34-s + 4·37-s − 4·38-s + 8·40-s + 2·41-s − 4·43-s + 4·44-s + 12·46-s + 4·47-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.894·5-s + 1.41·8-s + 1.26·10-s + 0.603·11-s − 2.21·13-s + 2·16-s + 2.42·17-s − 0.458·19-s + 0.894·20-s + 0.852·22-s + 1.25·23-s + 3/5·25-s − 3.13·26-s − 0.371·29-s − 1.07·31-s + 1.41·32-s + 3.42·34-s + 0.657·37-s − 0.648·38-s + 1.26·40-s + 0.312·41-s − 0.609·43-s + 0.603·44-s + 1.76·46-s + 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4862025\)    =    \(3^{4} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(310.006\)
Root analytic conductor: \(4.19607\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4862025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.141733387\)
\(L(\frac12)\) \(\approx\) \(8.141733387\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
7 \( 1 \)
good2$C_2^2$ \( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 2 T + 20 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 8 T + 3 p T^{2} + 8 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 10 T + 56 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 2 T + 27 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 6 T + 52 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 2 T + 32 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 6 T + 59 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 4 T + 51 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 2 T + 80 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T + 63 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
53$D_{4}$ \( 1 + 4 T + 2 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 10 T + 116 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
67$D_{4}$ \( 1 + 12 T + 95 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 2 T + 116 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 8 T + 87 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 6 T + 59 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 6 T + 28 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 6 T + 40 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 16 T + 210 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.387169424041738946575738682102, −9.070815285831849735504544354741, −8.329314854553710522898125541166, −7.901649637049607527798861593735, −7.53449583874451770876862790834, −7.18116904729396565300064076755, −7.02791875543468575873253069303, −6.41064938264516690572384493412, −5.76823206927625251967800913820, −5.65869401239177399362902694186, −5.22465764297220065526974682434, −4.94303185529883518136152078696, −4.40789050424413627140145966940, −4.19671804362390176630651257814, −3.27809948990375726129320916217, −3.26233120230207922111087899340, −2.62354844400724227469842370311, −1.94886034724864169709111293311, −1.56034307809233887657442766841, −0.801804638470364563742738054091, 0.801804638470364563742738054091, 1.56034307809233887657442766841, 1.94886034724864169709111293311, 2.62354844400724227469842370311, 3.26233120230207922111087899340, 3.27809948990375726129320916217, 4.19671804362390176630651257814, 4.40789050424413627140145966940, 4.94303185529883518136152078696, 5.22465764297220065526974682434, 5.65869401239177399362902694186, 5.76823206927625251967800913820, 6.41064938264516690572384493412, 7.02791875543468575873253069303, 7.18116904729396565300064076755, 7.53449583874451770876862790834, 7.901649637049607527798861593735, 8.329314854553710522898125541166, 9.070815285831849735504544354741, 9.387169424041738946575738682102

Graph of the $Z$-function along the critical line