L(s) = 1 | + 2.56i·2-s − i·3-s − 4.56·4-s + 2.56·6-s − 3.12i·7-s − 6.56i·8-s − 9-s − 5.56·11-s + 4.56i·12-s + 2i·13-s + 8·14-s + 7.68·16-s + 1.12i·17-s − 2.56i·18-s + 3.12·19-s + ⋯ |
L(s) = 1 | + 1.81i·2-s − 0.577i·3-s − 2.28·4-s + 1.04·6-s − 1.18i·7-s − 2.31i·8-s − 0.333·9-s − 1.67·11-s + 1.31i·12-s + 0.554i·13-s + 2.13·14-s + 1.92·16-s + 0.272i·17-s − 0.603i·18-s + 0.716·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9179690014\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9179690014\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 - 2.56iT - 2T^{2} \) |
| 7 | \( 1 + 3.12iT - 7T^{2} \) |
| 11 | \( 1 + 5.56T + 11T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 - 1.12iT - 17T^{2} \) |
| 19 | \( 1 - 3.12T + 19T^{2} \) |
| 23 | \( 1 + 2.43iT - 23T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 - 10.6iT - 37T^{2} \) |
| 41 | \( 1 - 10.6T + 41T^{2} \) |
| 43 | \( 1 - 4.68iT - 43T^{2} \) |
| 47 | \( 1 + 4.87iT - 47T^{2} \) |
| 53 | \( 1 - 7.56iT - 53T^{2} \) |
| 59 | \( 1 + 12T + 59T^{2} \) |
| 61 | \( 1 - 9.12T + 61T^{2} \) |
| 67 | \( 1 - 13.3iT - 67T^{2} \) |
| 71 | \( 1 + 11.1T + 71T^{2} \) |
| 73 | \( 1 - 10.6iT - 73T^{2} \) |
| 79 | \( 1 - 12T + 79T^{2} \) |
| 83 | \( 1 + 1.56iT - 83T^{2} \) |
| 89 | \( 1 - 4.24T + 89T^{2} \) |
| 97 | \( 1 - 6.68iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.046853585728283829089775159895, −8.099707705731057820353778767370, −7.77844300012635102264914450806, −7.11941902189559581219967915467, −6.46517297776241480823529265099, −5.65421265092610980269431655960, −4.83892974456055030360231832003, −4.13209492771647556333732171127, −2.78158736611961523639792596892, −0.938075068546832454543000935030,
0.41124233683428177989139806321, 2.09133606814422816123499123628, 2.76312201184365734867181228665, 3.39826119013099505134550932173, 4.55792882557521425906612668622, 5.31353517840059737139040302142, 5.78055829869145500749852374058, 7.61895413525123564445502202020, 8.272043484307526779558785349190, 9.288147464462274579651194142907