Properties

Label 8-6e12-1.1-c2e4-0-2
Degree $8$
Conductor $2176782336$
Sign $1$
Analytic cond. $1199.92$
Root an. cond. $2.42602$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 4·4-s + 16·8-s − 14·11-s − 64·16-s + 4·17-s + 68·19-s + 56·22-s − 50·25-s + 64·32-s − 16·34-s − 272·38-s + 46·41-s + 14·43-s − 56·44-s − 98·49-s + 200·50-s + 82·59-s + 192·64-s + 62·67-s + 16·68-s + 284·73-s + 272·76-s − 184·82-s + 316·83-s − 56·86-s − 224·88-s + ⋯
L(s)  = 1  − 2·2-s + 4-s + 2·8-s − 1.27·11-s − 4·16-s + 4/17·17-s + 3.57·19-s + 2.54·22-s − 2·25-s + 2·32-s − 0.470·34-s − 7.15·38-s + 1.12·41-s + 0.325·43-s − 1.27·44-s − 2·49-s + 4·50-s + 1.38·59-s + 3·64-s + 0.925·67-s + 4/17·68-s + 3.89·73-s + 3.57·76-s − 2.24·82-s + 3.80·83-s − 0.651·86-s − 2.54·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(1199.92\)
Root analytic conductor: \(2.42602\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{12} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.3879453166\)
\(L(\frac12)\) \(\approx\) \(0.3879453166\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T + p^{2} T^{2} )^{2} \)
3 \( 1 \)
good5$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
7$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 + 14 T + p^{2} T^{2} )^{2}( 1 - 14 T + 75 T^{2} - 14 p^{2} T^{3} + p^{4} T^{4} ) \)
13$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( ( 1 - 2 T - 285 T^{2} - 2 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 34 T + 795 T^{2} - 34 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
29$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
31$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 - 46 T + p^{2} T^{2} )^{2}( 1 + 46 T + 435 T^{2} + 46 p^{2} T^{3} + p^{4} T^{4} ) \)
43$C_2$$\times$$C_2^2$ \( ( 1 - 14 T + p^{2} T^{2} )^{2}( 1 + 14 T - 1653 T^{2} + 14 p^{2} T^{3} + p^{4} T^{4} ) \)
47$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 - 82 T + p^{2} T^{2} )^{2}( 1 + 82 T + 3243 T^{2} + 82 p^{2} T^{3} + p^{4} T^{4} ) \)
61$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 - 62 T + p^{2} T^{2} )^{2}( 1 + 62 T - 645 T^{2} + 62 p^{2} T^{3} + p^{4} T^{4} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
73$C_2^2$ \( ( 1 - 142 T + 14835 T^{2} - 142 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( ( 1 - 158 T + 18075 T^{2} - 158 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 146 T + p^{2} T^{2} )^{4} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + 94 T + p^{2} T^{2} )^{2}( 1 - 94 T - 573 T^{2} - 94 p^{2} T^{3} + p^{4} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.609023505265173200641283558035, −8.539279138948929880449458575976, −8.043960930087855465230227610986, −8.030410553084850833720197251104, −8.024841636888128569183503125444, −7.45278819079553199638414103337, −7.33145222187899557169835312468, −7.29925071790697913586880597815, −6.73608954010980350475924301056, −6.52412037713734530892687853162, −5.99245713687831300836265771623, −5.56110220437488905844570875122, −5.32413880187821766657740871065, −5.19427117847164033546789147460, −5.02894901456723666273411390729, −4.39196292947973552380071960533, −4.14578394285584096654554668804, −3.59972957805768996764003003245, −3.50128333322726145194408794742, −2.88931258865112784245262770458, −2.35013170716717550082801988236, −2.05168015986657823888316682441, −1.19224508629314477858381693095, −1.11253783113985404478538028219, −0.31818183640242626108762187906, 0.31818183640242626108762187906, 1.11253783113985404478538028219, 1.19224508629314477858381693095, 2.05168015986657823888316682441, 2.35013170716717550082801988236, 2.88931258865112784245262770458, 3.50128333322726145194408794742, 3.59972957805768996764003003245, 4.14578394285584096654554668804, 4.39196292947973552380071960533, 5.02894901456723666273411390729, 5.19427117847164033546789147460, 5.32413880187821766657740871065, 5.56110220437488905844570875122, 5.99245713687831300836265771623, 6.52412037713734530892687853162, 6.73608954010980350475924301056, 7.29925071790697913586880597815, 7.33145222187899557169835312468, 7.45278819079553199638414103337, 8.024841636888128569183503125444, 8.030410553084850833720197251104, 8.043960930087855465230227610986, 8.539279138948929880449458575976, 8.609023505265173200641283558035

Graph of the $Z$-function along the critical line