Properties

Label 4-6e6-1.1-c2e2-0-0
Degree $4$
Conductor $46656$
Sign $1$
Analytic cond. $34.6399$
Root an. cond. $2.42602$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·7-s + 14·13-s − 38·19-s + 42·25-s − 20·31-s + 126·37-s − 100·43-s − 71·49-s + 158·61-s + 154·67-s − 34·73-s − 22·79-s − 84·91-s − 194·97-s + 266·103-s + 260·109-s − 150·121-s + 127-s + 131-s + 228·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 6/7·7-s + 1.07·13-s − 2·19-s + 1.67·25-s − 0.645·31-s + 3.40·37-s − 2.32·43-s − 1.44·49-s + 2.59·61-s + 2.29·67-s − 0.465·73-s − 0.278·79-s − 0.923·91-s − 2·97-s + 2.58·103-s + 2.38·109-s − 1.23·121-s + 0.00787·127-s + 0.00763·131-s + 12/7·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(46656\)    =    \(2^{6} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(34.6399\)
Root analytic conductor: \(2.42602\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 46656,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.592044277\)
\(L(\frac12)\) \(\approx\) \(1.592044277\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 42 T^{2} + p^{4} T^{4} \)
7$C_2$ \( ( 1 + 3 T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 + 150 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 - 7 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 378 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 + p T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 1050 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 + 910 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 63 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 770 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 + 50 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 2618 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 210 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 + 2838 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 79 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 77 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 3810 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 17 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 11 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 12210 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 14042 T^{2} + p^{4} T^{4} \)
97$C_2$ \( ( 1 + p T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.69305762787801526711545289047, −11.70977860610617227098567862651, −11.22638498827461634904094621148, −11.04506956382298680623223183801, −10.39482482914812763809836030204, −9.825943646897817915613913547795, −9.539435407952949826363109546005, −8.774299524182894108602763993439, −8.359929886661361973947746881358, −8.101326986853750701934163540746, −7.09492117274099749645533492537, −6.53007635444527891597178741168, −6.40110719362524553800153061383, −5.67992556246414970759367312034, −4.86084522784574180344487689848, −4.24801590395536063941728662376, −3.57282744992988254813882842688, −2.88492772039715598952188767432, −1.98666229873596286392538499627, −0.71148437845598326309032742967, 0.71148437845598326309032742967, 1.98666229873596286392538499627, 2.88492772039715598952188767432, 3.57282744992988254813882842688, 4.24801590395536063941728662376, 4.86084522784574180344487689848, 5.67992556246414970759367312034, 6.40110719362524553800153061383, 6.53007635444527891597178741168, 7.09492117274099749645533492537, 8.101326986853750701934163540746, 8.359929886661361973947746881358, 8.774299524182894108602763993439, 9.539435407952949826363109546005, 9.825943646897817915613913547795, 10.39482482914812763809836030204, 11.04506956382298680623223183801, 11.22638498827461634904094621148, 11.70977860610617227098567862651, 12.69305762787801526711545289047

Graph of the $Z$-function along the critical line