Properties

Label 2-6e3-27.13-c1-0-4
Degree $2$
Conductor $216$
Sign $0.880 - 0.473i$
Analytic cond. $1.72476$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.56 + 0.732i)3-s + (0.407 + 0.341i)5-s + (0.507 + 0.184i)7-s + (1.92 + 2.29i)9-s + (−1.49 + 1.25i)11-s + (0.696 − 3.94i)13-s + (0.388 + 0.834i)15-s + (0.0114 − 0.0199i)17-s + (1.25 + 2.17i)19-s + (0.661 + 0.661i)21-s + (−6.43 + 2.34i)23-s + (−0.819 − 4.64i)25-s + (1.33 + 5.02i)27-s + (−1.03 − 5.88i)29-s + (3.81 − 1.38i)31-s + ⋯
L(s)  = 1  + (0.906 + 0.423i)3-s + (0.182 + 0.152i)5-s + (0.191 + 0.0698i)7-s + (0.642 + 0.766i)9-s + (−0.449 + 0.377i)11-s + (0.193 − 1.09i)13-s + (0.100 + 0.215i)15-s + (0.00278 − 0.00483i)17-s + (0.287 + 0.498i)19-s + (0.144 + 0.144i)21-s + (−1.34 + 0.488i)23-s + (−0.163 − 0.929i)25-s + (0.257 + 0.966i)27-s + (−0.192 − 1.09i)29-s + (0.684 − 0.249i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $0.880 - 0.473i$
Analytic conductor: \(1.72476\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (121, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1/2),\ 0.880 - 0.473i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.57014 + 0.395269i\)
\(L(\frac12)\) \(\approx\) \(1.57014 + 0.395269i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.56 - 0.732i)T \)
good5 \( 1 + (-0.407 - 0.341i)T + (0.868 + 4.92i)T^{2} \)
7 \( 1 + (-0.507 - 0.184i)T + (5.36 + 4.49i)T^{2} \)
11 \( 1 + (1.49 - 1.25i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (-0.696 + 3.94i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (-0.0114 + 0.0199i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-1.25 - 2.17i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (6.43 - 2.34i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (1.03 + 5.88i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-3.81 + 1.38i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-3.58 + 6.21i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (1.30 - 7.42i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (4.23 - 3.55i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (10.4 + 3.81i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 - 2.91T + 53T^{2} \)
59 \( 1 + (3.02 + 2.53i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (9.15 + 3.33i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-1.88 + 10.6i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (-2.30 + 3.98i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-8.36 - 14.4i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-2.23 - 12.6i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (0.334 + 1.89i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (-3.68 - 6.38i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (2.32 - 1.95i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57170122045692672616999808177, −11.32384078825475614662254953778, −10.08234954555724416908076450798, −9.752658243001566812278993556364, −8.148582497360882228891554065599, −7.86046423205781193148514448418, −6.16779208234457854696488374262, −4.85446050471168109743400273907, −3.54515036876401744311801455577, −2.21330950159023054067680571500, 1.75519026067211841880388355423, 3.26338523084797425322799996107, 4.65498883542547953783403398806, 6.23622750275082384582992172242, 7.29979219919612349095501479790, 8.339021221950373877848695992453, 9.137468953475989919898606752209, 10.12953377624078164946523980688, 11.39801215048237207368313457195, 12.34936079524081739209452054989

Graph of the $Z$-function along the critical line