Properties

Label 2-2151-1.1-c3-0-69
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.24·2-s + 19.5·4-s + 10.0·5-s + 0.804·7-s − 60.5·8-s − 52.9·10-s + 0.829·11-s − 86.7·13-s − 4.22·14-s + 161.·16-s + 50.2·17-s + 121.·19-s + 197.·20-s − 4.35·22-s − 76.0·23-s − 23.0·25-s + 455.·26-s + 15.7·28-s + 40.2·29-s − 81.0·31-s − 361.·32-s − 263.·34-s + 8.12·35-s − 321.·37-s − 635.·38-s − 610.·40-s − 147.·41-s + ⋯
L(s)  = 1  − 1.85·2-s + 2.44·4-s + 0.902·5-s + 0.0434·7-s − 2.67·8-s − 1.67·10-s + 0.0227·11-s − 1.85·13-s − 0.0805·14-s + 2.51·16-s + 0.716·17-s + 1.46·19-s + 2.20·20-s − 0.0421·22-s − 0.689·23-s − 0.184·25-s + 3.43·26-s + 0.106·28-s + 0.258·29-s − 0.469·31-s − 1.99·32-s − 1.32·34-s + 0.0392·35-s − 1.42·37-s − 2.71·38-s − 2.41·40-s − 0.562·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8286912066\)
\(L(\frac12)\) \(\approx\) \(0.8286912066\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 + 239T \)
good2 \( 1 + 5.24T + 8T^{2} \)
5 \( 1 - 10.0T + 125T^{2} \)
7 \( 1 - 0.804T + 343T^{2} \)
11 \( 1 - 0.829T + 1.33e3T^{2} \)
13 \( 1 + 86.7T + 2.19e3T^{2} \)
17 \( 1 - 50.2T + 4.91e3T^{2} \)
19 \( 1 - 121.T + 6.85e3T^{2} \)
23 \( 1 + 76.0T + 1.21e4T^{2} \)
29 \( 1 - 40.2T + 2.43e4T^{2} \)
31 \( 1 + 81.0T + 2.97e4T^{2} \)
37 \( 1 + 321.T + 5.06e4T^{2} \)
41 \( 1 + 147.T + 6.89e4T^{2} \)
43 \( 1 - 32.4T + 7.95e4T^{2} \)
47 \( 1 - 271.T + 1.03e5T^{2} \)
53 \( 1 + 110.T + 1.48e5T^{2} \)
59 \( 1 - 817.T + 2.05e5T^{2} \)
61 \( 1 + 492.T + 2.26e5T^{2} \)
67 \( 1 - 862.T + 3.00e5T^{2} \)
71 \( 1 - 395.T + 3.57e5T^{2} \)
73 \( 1 + 1.02e3T + 3.89e5T^{2} \)
79 \( 1 - 210.T + 4.93e5T^{2} \)
83 \( 1 - 879.T + 5.71e5T^{2} \)
89 \( 1 + 461.T + 7.04e5T^{2} \)
97 \( 1 + 372.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.919689175402494784115086046389, −7.948124955636567166379509212751, −7.41150596797329233943019332816, −6.77426492917819487099938042667, −5.75624540643917010983929620323, −5.07112183971776368690799240124, −3.31399827955287438590322494911, −2.33416974709948998510548858105, −1.66809544324431033929281531996, −0.54208577956489765223165170249, 0.54208577956489765223165170249, 1.66809544324431033929281531996, 2.33416974709948998510548858105, 3.31399827955287438590322494911, 5.07112183971776368690799240124, 5.75624540643917010983929620323, 6.77426492917819487099938042667, 7.41150596797329233943019332816, 7.948124955636567166379509212751, 8.919689175402494784115086046389

Graph of the $Z$-function along the critical line