Properties

Label 2-2151-1.1-c3-0-72
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.12·2-s − 3.49·4-s + 4.52·5-s + 14.7·7-s + 24.3·8-s − 9.60·10-s − 61.2·11-s − 8.40·13-s − 31.3·14-s − 23.7·16-s + 127.·17-s − 43.6·19-s − 15.8·20-s + 130.·22-s − 165.·23-s − 104.·25-s + 17.8·26-s − 51.7·28-s + 212.·29-s + 213.·31-s − 144.·32-s − 270.·34-s + 66.9·35-s + 56.0·37-s + 92.6·38-s + 110.·40-s − 328.·41-s + ⋯
L(s)  = 1  − 0.750·2-s − 0.437·4-s + 0.405·5-s + 0.798·7-s + 1.07·8-s − 0.303·10-s − 1.67·11-s − 0.179·13-s − 0.598·14-s − 0.371·16-s + 1.82·17-s − 0.527·19-s − 0.177·20-s + 1.26·22-s − 1.50·23-s − 0.835·25-s + 0.134·26-s − 0.349·28-s + 1.36·29-s + 1.23·31-s − 0.799·32-s − 1.36·34-s + 0.323·35-s + 0.248·37-s + 0.395·38-s + 0.436·40-s − 1.25·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.122224763\)
\(L(\frac12)\) \(\approx\) \(1.122224763\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 + 239T \)
good2 \( 1 + 2.12T + 8T^{2} \)
5 \( 1 - 4.52T + 125T^{2} \)
7 \( 1 - 14.7T + 343T^{2} \)
11 \( 1 + 61.2T + 1.33e3T^{2} \)
13 \( 1 + 8.40T + 2.19e3T^{2} \)
17 \( 1 - 127.T + 4.91e3T^{2} \)
19 \( 1 + 43.6T + 6.85e3T^{2} \)
23 \( 1 + 165.T + 1.21e4T^{2} \)
29 \( 1 - 212.T + 2.43e4T^{2} \)
31 \( 1 - 213.T + 2.97e4T^{2} \)
37 \( 1 - 56.0T + 5.06e4T^{2} \)
41 \( 1 + 328.T + 6.89e4T^{2} \)
43 \( 1 - 33.0T + 7.95e4T^{2} \)
47 \( 1 + 259.T + 1.03e5T^{2} \)
53 \( 1 - 150.T + 1.48e5T^{2} \)
59 \( 1 - 807.T + 2.05e5T^{2} \)
61 \( 1 + 437.T + 2.26e5T^{2} \)
67 \( 1 - 641.T + 3.00e5T^{2} \)
71 \( 1 - 417.T + 3.57e5T^{2} \)
73 \( 1 - 236.T + 3.89e5T^{2} \)
79 \( 1 + 67.8T + 4.93e5T^{2} \)
83 \( 1 - 13.7T + 5.71e5T^{2} \)
89 \( 1 - 1.49e3T + 7.04e5T^{2} \)
97 \( 1 - 471.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.440010675096965384563612079762, −8.031302450402769784691780983433, −7.71196794182836222155814527640, −6.39507460579423753215841340075, −5.33447740668933622287907137003, −4.95535652167281292071421614817, −3.86911552687122484185571670795, −2.59156491699850186513449797374, −1.64414920921264031282396931972, −0.55447870068562057628836695960, 0.55447870068562057628836695960, 1.64414920921264031282396931972, 2.59156491699850186513449797374, 3.86911552687122484185571670795, 4.95535652167281292071421614817, 5.33447740668933622287907137003, 6.39507460579423753215841340075, 7.71196794182836222155814527640, 8.031302450402769784691780983433, 8.440010675096965384563612079762

Graph of the $Z$-function along the critical line