Properties

Label 2-2151-1.1-c3-0-22
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.95·2-s + 0.709·4-s − 16.6·5-s − 30.2·7-s + 21.5·8-s + 49.0·10-s − 7.82·11-s + 48.9·13-s + 89.2·14-s − 69.1·16-s + 47.2·17-s + 48.8·19-s − 11.8·20-s + 23.1·22-s − 130.·23-s + 151.·25-s − 144.·26-s − 21.4·28-s + 145.·29-s − 122.·31-s + 32.0·32-s − 139.·34-s + 503.·35-s − 31.4·37-s − 144.·38-s − 357.·40-s − 123.·41-s + ⋯
L(s)  = 1  − 1.04·2-s + 0.0886·4-s − 1.48·5-s − 1.63·7-s + 0.950·8-s + 1.55·10-s − 0.214·11-s + 1.04·13-s + 1.70·14-s − 1.08·16-s + 0.673·17-s + 0.589·19-s − 0.131·20-s + 0.223·22-s − 1.18·23-s + 1.21·25-s − 1.08·26-s − 0.144·28-s + 0.932·29-s − 0.708·31-s + 0.176·32-s − 0.702·34-s + 2.42·35-s − 0.139·37-s − 0.615·38-s − 1.41·40-s − 0.470·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1605799757\)
\(L(\frac12)\) \(\approx\) \(0.1605799757\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 + 239T \)
good2 \( 1 + 2.95T + 8T^{2} \)
5 \( 1 + 16.6T + 125T^{2} \)
7 \( 1 + 30.2T + 343T^{2} \)
11 \( 1 + 7.82T + 1.33e3T^{2} \)
13 \( 1 - 48.9T + 2.19e3T^{2} \)
17 \( 1 - 47.2T + 4.91e3T^{2} \)
19 \( 1 - 48.8T + 6.85e3T^{2} \)
23 \( 1 + 130.T + 1.21e4T^{2} \)
29 \( 1 - 145.T + 2.43e4T^{2} \)
31 \( 1 + 122.T + 2.97e4T^{2} \)
37 \( 1 + 31.4T + 5.06e4T^{2} \)
41 \( 1 + 123.T + 6.89e4T^{2} \)
43 \( 1 + 306.T + 7.95e4T^{2} \)
47 \( 1 + 143.T + 1.03e5T^{2} \)
53 \( 1 - 285.T + 1.48e5T^{2} \)
59 \( 1 + 260.T + 2.05e5T^{2} \)
61 \( 1 + 604.T + 2.26e5T^{2} \)
67 \( 1 + 517.T + 3.00e5T^{2} \)
71 \( 1 + 246.T + 3.57e5T^{2} \)
73 \( 1 + 882.T + 3.89e5T^{2} \)
79 \( 1 + 1.16e3T + 4.93e5T^{2} \)
83 \( 1 + 34.8T + 5.71e5T^{2} \)
89 \( 1 - 810.T + 7.04e5T^{2} \)
97 \( 1 + 192.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.688443265837766809492389510418, −8.049852736526316738638574268600, −7.42046716394474560668812074575, −6.67281330806489233692634197347, −5.74179566295157911166022504931, −4.45842422259734005562997122305, −3.66327271188467637077124652753, −3.07096925649549873009262186514, −1.34160094242162130232963130956, −0.23352445526914772995484677290, 0.23352445526914772995484677290, 1.34160094242162130232963130956, 3.07096925649549873009262186514, 3.66327271188467637077124652753, 4.45842422259734005562997122305, 5.74179566295157911166022504931, 6.67281330806489233692634197347, 7.42046716394474560668812074575, 8.049852736526316738638574268600, 8.688443265837766809492389510418

Graph of the $Z$-function along the critical line