Properties

Label 2-2151-1.1-c3-0-100
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.10·2-s + 8.83·4-s − 7.42·5-s + 5.67·7-s − 3.41·8-s + 30.4·10-s + 1.97·11-s + 0.731·13-s − 23.2·14-s − 56.6·16-s + 109.·17-s + 82.2·19-s − 65.5·20-s − 8.11·22-s + 189.·23-s − 69.9·25-s − 3.00·26-s + 50.1·28-s + 180.·29-s − 85.3·31-s + 259.·32-s − 449.·34-s − 42.1·35-s + 336.·37-s − 337.·38-s + 25.3·40-s − 337.·41-s + ⋯
L(s)  = 1  − 1.45·2-s + 1.10·4-s − 0.663·5-s + 0.306·7-s − 0.151·8-s + 0.962·10-s + 0.0542·11-s + 0.0156·13-s − 0.444·14-s − 0.885·16-s + 1.56·17-s + 0.992·19-s − 0.732·20-s − 0.0786·22-s + 1.71·23-s − 0.559·25-s − 0.0226·26-s + 0.338·28-s + 1.15·29-s − 0.494·31-s + 1.43·32-s − 2.26·34-s − 0.203·35-s + 1.49·37-s − 1.43·38-s + 0.100·40-s − 1.28·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.111134592\)
\(L(\frac12)\) \(\approx\) \(1.111134592\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 + 239T \)
good2 \( 1 + 4.10T + 8T^{2} \)
5 \( 1 + 7.42T + 125T^{2} \)
7 \( 1 - 5.67T + 343T^{2} \)
11 \( 1 - 1.97T + 1.33e3T^{2} \)
13 \( 1 - 0.731T + 2.19e3T^{2} \)
17 \( 1 - 109.T + 4.91e3T^{2} \)
19 \( 1 - 82.2T + 6.85e3T^{2} \)
23 \( 1 - 189.T + 1.21e4T^{2} \)
29 \( 1 - 180.T + 2.43e4T^{2} \)
31 \( 1 + 85.3T + 2.97e4T^{2} \)
37 \( 1 - 336.T + 5.06e4T^{2} \)
41 \( 1 + 337.T + 6.89e4T^{2} \)
43 \( 1 - 46.0T + 7.95e4T^{2} \)
47 \( 1 - 411.T + 1.03e5T^{2} \)
53 \( 1 - 672.T + 1.48e5T^{2} \)
59 \( 1 - 219.T + 2.05e5T^{2} \)
61 \( 1 - 480.T + 2.26e5T^{2} \)
67 \( 1 + 575.T + 3.00e5T^{2} \)
71 \( 1 + 483.T + 3.57e5T^{2} \)
73 \( 1 - 165.T + 3.89e5T^{2} \)
79 \( 1 - 539.T + 4.93e5T^{2} \)
83 \( 1 - 97.1T + 5.71e5T^{2} \)
89 \( 1 - 68.4T + 7.04e5T^{2} \)
97 \( 1 + 96.0T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.710415413704288894809778542129, −7.975481668966004229581492317882, −7.49020238327023612837604573218, −6.84561262339680780893708732966, −5.61655270244623826447117072595, −4.75640481855578104685403025236, −3.63941768303076133261570887652, −2.65578522561883747401367160982, −1.27828713451049260190101299198, −0.70551837465678999613667549789, 0.70551837465678999613667549789, 1.27828713451049260190101299198, 2.65578522561883747401367160982, 3.63941768303076133261570887652, 4.75640481855578104685403025236, 5.61655270244623826447117072595, 6.84561262339680780893708732966, 7.49020238327023612837604573218, 7.975481668966004229581492317882, 8.710415413704288894809778542129

Graph of the $Z$-function along the critical line