Properties

Label 2-2151-1.1-c3-0-102
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.53·2-s + 12.5·4-s − 19.7·5-s + 34.6·7-s − 20.8·8-s + 89.4·10-s + 41.4·11-s − 54.5·13-s − 157.·14-s − 6.12·16-s + 60.1·17-s + 108.·19-s − 248.·20-s − 188.·22-s + 49.6·23-s + 263.·25-s + 247.·26-s + 436.·28-s − 118.·29-s − 118.·31-s + 194.·32-s − 272.·34-s − 683.·35-s + 90.9·37-s − 493.·38-s + 410.·40-s + 397.·41-s + ⋯
L(s)  = 1  − 1.60·2-s + 1.57·4-s − 1.76·5-s + 1.87·7-s − 0.921·8-s + 2.82·10-s + 1.13·11-s − 1.16·13-s − 3.00·14-s − 0.0957·16-s + 0.857·17-s + 1.31·19-s − 2.77·20-s − 1.82·22-s + 0.449·23-s + 2.10·25-s + 1.86·26-s + 2.94·28-s − 0.761·29-s − 0.687·31-s + 1.07·32-s − 1.37·34-s − 3.29·35-s + 0.403·37-s − 2.10·38-s + 1.62·40-s + 1.51·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.047141630\)
\(L(\frac12)\) \(\approx\) \(1.047141630\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 4.53T + 8T^{2} \)
5 \( 1 + 19.7T + 125T^{2} \)
7 \( 1 - 34.6T + 343T^{2} \)
11 \( 1 - 41.4T + 1.33e3T^{2} \)
13 \( 1 + 54.5T + 2.19e3T^{2} \)
17 \( 1 - 60.1T + 4.91e3T^{2} \)
19 \( 1 - 108.T + 6.85e3T^{2} \)
23 \( 1 - 49.6T + 1.21e4T^{2} \)
29 \( 1 + 118.T + 2.43e4T^{2} \)
31 \( 1 + 118.T + 2.97e4T^{2} \)
37 \( 1 - 90.9T + 5.06e4T^{2} \)
41 \( 1 - 397.T + 6.89e4T^{2} \)
43 \( 1 - 418.T + 7.95e4T^{2} \)
47 \( 1 - 371.T + 1.03e5T^{2} \)
53 \( 1 - 396.T + 1.48e5T^{2} \)
59 \( 1 + 139.T + 2.05e5T^{2} \)
61 \( 1 - 636.T + 2.26e5T^{2} \)
67 \( 1 - 222.T + 3.00e5T^{2} \)
71 \( 1 + 99.2T + 3.57e5T^{2} \)
73 \( 1 + 1.06e3T + 3.89e5T^{2} \)
79 \( 1 + 600.T + 4.93e5T^{2} \)
83 \( 1 + 99.5T + 5.71e5T^{2} \)
89 \( 1 - 80.6T + 7.04e5T^{2} \)
97 \( 1 - 1.19e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.757635919577280623297348776749, −7.80794673325885827906327187283, −7.44029514874505736023383344831, −7.26178867854967331349859547857, −5.54750428358497319553229663507, −4.56731255733630474489409432264, −3.87436813012362534470333038634, −2.50859577587776742445270009869, −1.25518672692722481609792433731, −0.71392300550174348723682857423, 0.71392300550174348723682857423, 1.25518672692722481609792433731, 2.50859577587776742445270009869, 3.87436813012362534470333038634, 4.56731255733630474489409432264, 5.54750428358497319553229663507, 7.26178867854967331349859547857, 7.44029514874505736023383344831, 7.80794673325885827906327187283, 8.757635919577280623297348776749

Graph of the $Z$-function along the critical line