Properties

Label 2-2151-1.1-c3-0-45
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.20·2-s + 9.70·4-s − 14.3·5-s − 14.1·7-s + 7.18·8-s − 60.2·10-s − 40.6·11-s − 64.6·13-s − 59.5·14-s − 47.4·16-s − 38.1·17-s − 42.2·19-s − 138.·20-s − 171.·22-s + 189.·23-s + 79.9·25-s − 271.·26-s − 137.·28-s + 50.4·29-s + 242.·31-s − 257.·32-s − 160.·34-s + 202.·35-s + 339.·37-s − 177.·38-s − 102.·40-s − 210.·41-s + ⋯
L(s)  = 1  + 1.48·2-s + 1.21·4-s − 1.28·5-s − 0.764·7-s + 0.317·8-s − 1.90·10-s − 1.11·11-s − 1.37·13-s − 1.13·14-s − 0.740·16-s − 0.544·17-s − 0.509·19-s − 1.55·20-s − 1.65·22-s + 1.71·23-s + 0.639·25-s − 2.05·26-s − 0.927·28-s + 0.322·29-s + 1.40·31-s − 1.41·32-s − 0.809·34-s + 0.979·35-s + 1.50·37-s − 0.758·38-s − 0.406·40-s − 0.800·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.567406923\)
\(L(\frac12)\) \(\approx\) \(1.567406923\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 4.20T + 8T^{2} \)
5 \( 1 + 14.3T + 125T^{2} \)
7 \( 1 + 14.1T + 343T^{2} \)
11 \( 1 + 40.6T + 1.33e3T^{2} \)
13 \( 1 + 64.6T + 2.19e3T^{2} \)
17 \( 1 + 38.1T + 4.91e3T^{2} \)
19 \( 1 + 42.2T + 6.85e3T^{2} \)
23 \( 1 - 189.T + 1.21e4T^{2} \)
29 \( 1 - 50.4T + 2.43e4T^{2} \)
31 \( 1 - 242.T + 2.97e4T^{2} \)
37 \( 1 - 339.T + 5.06e4T^{2} \)
41 \( 1 + 210.T + 6.89e4T^{2} \)
43 \( 1 + 133.T + 7.95e4T^{2} \)
47 \( 1 - 264.T + 1.03e5T^{2} \)
53 \( 1 + 437.T + 1.48e5T^{2} \)
59 \( 1 - 610.T + 2.05e5T^{2} \)
61 \( 1 - 252.T + 2.26e5T^{2} \)
67 \( 1 - 50.1T + 3.00e5T^{2} \)
71 \( 1 - 426.T + 3.57e5T^{2} \)
73 \( 1 + 568.T + 3.89e5T^{2} \)
79 \( 1 - 883.T + 4.93e5T^{2} \)
83 \( 1 + 947.T + 5.71e5T^{2} \)
89 \( 1 + 916.T + 7.04e5T^{2} \)
97 \( 1 - 1.79e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.546778166472879675043337754052, −7.71514735092815785257278176191, −6.96482575097469749308990639251, −6.36681500324139470976504895947, −5.16236073201542215077365024209, −4.72696440389829837741527983096, −3.94802660267808666700634187112, −2.93851634597104444996484118995, −2.57024791763983177438050128755, −0.41829625443227922901784017741, 0.41829625443227922901784017741, 2.57024791763983177438050128755, 2.93851634597104444996484118995, 3.94802660267808666700634187112, 4.72696440389829837741527983096, 5.16236073201542215077365024209, 6.36681500324139470976504895947, 6.96482575097469749308990639251, 7.71514735092815785257278176191, 8.546778166472879675043337754052

Graph of the $Z$-function along the critical line