Properties

Label 2-2151-1.1-c3-0-165
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.50·2-s + 4.26·4-s + 11.8·5-s + 22.4·7-s − 13.0·8-s + 41.3·10-s + 54.9·11-s − 62.3·13-s + 78.7·14-s − 79.9·16-s − 10.7·17-s − 33.3·19-s + 50.4·20-s + 192.·22-s − 25.0·23-s + 14.6·25-s − 218.·26-s + 95.9·28-s + 235.·29-s + 338.·31-s − 175.·32-s − 37.5·34-s + 265.·35-s + 223.·37-s − 116.·38-s − 154.·40-s + 399.·41-s + ⋯
L(s)  = 1  + 1.23·2-s + 0.533·4-s + 1.05·5-s + 1.21·7-s − 0.577·8-s + 1.30·10-s + 1.50·11-s − 1.33·13-s + 1.50·14-s − 1.24·16-s − 0.152·17-s − 0.402·19-s + 0.563·20-s + 1.86·22-s − 0.226·23-s + 0.117·25-s − 1.64·26-s + 0.647·28-s + 1.50·29-s + 1.96·31-s − 0.968·32-s − 0.189·34-s + 1.28·35-s + 0.991·37-s − 0.498·38-s − 0.610·40-s + 1.52·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.359001585\)
\(L(\frac12)\) \(\approx\) \(6.359001585\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 3.50T + 8T^{2} \)
5 \( 1 - 11.8T + 125T^{2} \)
7 \( 1 - 22.4T + 343T^{2} \)
11 \( 1 - 54.9T + 1.33e3T^{2} \)
13 \( 1 + 62.3T + 2.19e3T^{2} \)
17 \( 1 + 10.7T + 4.91e3T^{2} \)
19 \( 1 + 33.3T + 6.85e3T^{2} \)
23 \( 1 + 25.0T + 1.21e4T^{2} \)
29 \( 1 - 235.T + 2.43e4T^{2} \)
31 \( 1 - 338.T + 2.97e4T^{2} \)
37 \( 1 - 223.T + 5.06e4T^{2} \)
41 \( 1 - 399.T + 6.89e4T^{2} \)
43 \( 1 - 180.T + 7.95e4T^{2} \)
47 \( 1 + 301.T + 1.03e5T^{2} \)
53 \( 1 + 257.T + 1.48e5T^{2} \)
59 \( 1 - 192.T + 2.05e5T^{2} \)
61 \( 1 - 825.T + 2.26e5T^{2} \)
67 \( 1 - 258.T + 3.00e5T^{2} \)
71 \( 1 + 405.T + 3.57e5T^{2} \)
73 \( 1 + 762.T + 3.89e5T^{2} \)
79 \( 1 - 332.T + 4.93e5T^{2} \)
83 \( 1 - 241.T + 5.71e5T^{2} \)
89 \( 1 + 990.T + 7.04e5T^{2} \)
97 \( 1 + 1.69e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.759343888552483875130930262803, −7.933615617249267391096781094278, −6.73953998543014615757622311776, −6.24382974425799584491692265020, −5.42479787886527131979008756183, −4.52062868240826693063528760516, −4.30781306043155034509287476198, −2.81232004400537895125291406509, −2.12090808191363266393047064293, −0.996416944651744282598350247635, 0.996416944651744282598350247635, 2.12090808191363266393047064293, 2.81232004400537895125291406509, 4.30781306043155034509287476198, 4.52062868240826693063528760516, 5.42479787886527131979008756183, 6.24382974425799584491692265020, 6.73953998543014615757622311776, 7.933615617249267391096781094278, 8.759343888552483875130930262803

Graph of the $Z$-function along the critical line