Properties

Label 2-2151-1.1-c3-0-99
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.12·2-s + 1.79·4-s − 20.5·5-s + 28.8·7-s − 19.4·8-s − 64.4·10-s + 58.6·11-s + 76.6·13-s + 90.4·14-s − 75.1·16-s − 51.0·17-s − 80.5·19-s − 36.9·20-s + 183.·22-s − 7.88·23-s + 299.·25-s + 239.·26-s + 51.8·28-s − 68.8·29-s + 73.6·31-s − 79.7·32-s − 159.·34-s − 595.·35-s − 413.·37-s − 252.·38-s + 399.·40-s − 227.·41-s + ⋯
L(s)  = 1  + 1.10·2-s + 0.224·4-s − 1.84·5-s + 1.56·7-s − 0.858·8-s − 2.03·10-s + 1.60·11-s + 1.63·13-s + 1.72·14-s − 1.17·16-s − 0.727·17-s − 0.972·19-s − 0.413·20-s + 1.77·22-s − 0.0715·23-s + 2.39·25-s + 1.80·26-s + 0.349·28-s − 0.440·29-s + 0.426·31-s − 0.440·32-s − 0.805·34-s − 2.87·35-s − 1.83·37-s − 1.07·38-s + 1.58·40-s − 0.866·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.151937565\)
\(L(\frac12)\) \(\approx\) \(3.151937565\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 3.12T + 8T^{2} \)
5 \( 1 + 20.5T + 125T^{2} \)
7 \( 1 - 28.8T + 343T^{2} \)
11 \( 1 - 58.6T + 1.33e3T^{2} \)
13 \( 1 - 76.6T + 2.19e3T^{2} \)
17 \( 1 + 51.0T + 4.91e3T^{2} \)
19 \( 1 + 80.5T + 6.85e3T^{2} \)
23 \( 1 + 7.88T + 1.21e4T^{2} \)
29 \( 1 + 68.8T + 2.43e4T^{2} \)
31 \( 1 - 73.6T + 2.97e4T^{2} \)
37 \( 1 + 413.T + 5.06e4T^{2} \)
41 \( 1 + 227.T + 6.89e4T^{2} \)
43 \( 1 + 107.T + 7.95e4T^{2} \)
47 \( 1 - 14.0T + 1.03e5T^{2} \)
53 \( 1 - 42.3T + 1.48e5T^{2} \)
59 \( 1 - 468.T + 2.05e5T^{2} \)
61 \( 1 - 128.T + 2.26e5T^{2} \)
67 \( 1 - 769.T + 3.00e5T^{2} \)
71 \( 1 + 210.T + 3.57e5T^{2} \)
73 \( 1 - 1.20e3T + 3.89e5T^{2} \)
79 \( 1 - 974.T + 4.93e5T^{2} \)
83 \( 1 + 589.T + 5.71e5T^{2} \)
89 \( 1 - 1.38e3T + 7.04e5T^{2} \)
97 \( 1 - 1.58e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.479085430492953661619422689904, −8.215178090576489811820935503614, −6.92596616550591167678881695462, −6.44023904004194754934228643020, −5.19608161441706459236118012103, −4.49871652794938861234895123130, −3.81429003792900279401644314595, −3.60280557995233875988850119908, −1.86618960118624959738058226939, −0.70438568596587855856874012923, 0.70438568596587855856874012923, 1.86618960118624959738058226939, 3.60280557995233875988850119908, 3.81429003792900279401644314595, 4.49871652794938861234895123130, 5.19608161441706459236118012103, 6.44023904004194754934228643020, 6.92596616550591167678881695462, 8.215178090576489811820935503614, 8.479085430492953661619422689904

Graph of the $Z$-function along the critical line