Properties

Label 2-2151-1.1-c3-0-36
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.86·2-s + 0.188·4-s + 5.35·5-s − 31.0·7-s − 22.3·8-s + 15.3·10-s − 33.3·11-s − 60.8·13-s − 88.9·14-s − 65.4·16-s − 102.·17-s + 143.·19-s + 1.00·20-s − 95.4·22-s + 68.1·23-s − 96.3·25-s − 174.·26-s − 5.85·28-s − 128.·29-s + 232.·31-s − 8.52·32-s − 292.·34-s − 166.·35-s − 352.·37-s + 411.·38-s − 119.·40-s − 133.·41-s + ⋯
L(s)  = 1  + 1.01·2-s + 0.0235·4-s + 0.478·5-s − 1.67·7-s − 0.987·8-s + 0.484·10-s − 0.914·11-s − 1.29·13-s − 1.69·14-s − 1.02·16-s − 1.45·17-s + 1.73·19-s + 0.0112·20-s − 0.924·22-s + 0.617·23-s − 0.770·25-s − 1.31·26-s − 0.0395·28-s − 0.825·29-s + 1.34·31-s − 0.0470·32-s − 1.47·34-s − 0.803·35-s − 1.56·37-s + 1.75·38-s − 0.473·40-s − 0.507·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.067632529\)
\(L(\frac12)\) \(\approx\) \(1.067632529\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 2.86T + 8T^{2} \)
5 \( 1 - 5.35T + 125T^{2} \)
7 \( 1 + 31.0T + 343T^{2} \)
11 \( 1 + 33.3T + 1.33e3T^{2} \)
13 \( 1 + 60.8T + 2.19e3T^{2} \)
17 \( 1 + 102.T + 4.91e3T^{2} \)
19 \( 1 - 143.T + 6.85e3T^{2} \)
23 \( 1 - 68.1T + 1.21e4T^{2} \)
29 \( 1 + 128.T + 2.43e4T^{2} \)
31 \( 1 - 232.T + 2.97e4T^{2} \)
37 \( 1 + 352.T + 5.06e4T^{2} \)
41 \( 1 + 133.T + 6.89e4T^{2} \)
43 \( 1 - 560.T + 7.95e4T^{2} \)
47 \( 1 + 270.T + 1.03e5T^{2} \)
53 \( 1 + 378.T + 1.48e5T^{2} \)
59 \( 1 + 200.T + 2.05e5T^{2} \)
61 \( 1 - 112.T + 2.26e5T^{2} \)
67 \( 1 + 21.8T + 3.00e5T^{2} \)
71 \( 1 - 687.T + 3.57e5T^{2} \)
73 \( 1 - 510.T + 3.89e5T^{2} \)
79 \( 1 - 556.T + 4.93e5T^{2} \)
83 \( 1 - 954.T + 5.71e5T^{2} \)
89 \( 1 - 285.T + 7.04e5T^{2} \)
97 \( 1 + 1.40e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.042561752884474602609122301310, −7.75550595766523193225911834711, −6.87752421545013213686837989993, −6.27162559511869405732177394169, −5.36723517526317218778850703377, −4.89480114056079038944412301180, −3.75269116303281015989003505735, −2.96055418227611519837462119864, −2.35317560173020367997020720024, −0.37015152582664798335490258948, 0.37015152582664798335490258948, 2.35317560173020367997020720024, 2.96055418227611519837462119864, 3.75269116303281015989003505735, 4.89480114056079038944412301180, 5.36723517526317218778850703377, 6.27162559511869405732177394169, 6.87752421545013213686837989993, 7.75550595766523193225911834711, 9.042561752884474602609122301310

Graph of the $Z$-function along the critical line