Properties

Label 2-2151-1.1-c3-0-58
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.918·2-s − 7.15·4-s − 19.7·5-s + 10.7·7-s + 13.9·8-s + 18.0·10-s − 9.70·11-s + 45.1·13-s − 9.84·14-s + 44.4·16-s + 7.90·17-s + 6.45·19-s + 141.·20-s + 8.91·22-s + 192.·23-s + 263.·25-s − 41.4·26-s − 76.6·28-s − 188.·29-s + 176.·31-s − 152.·32-s − 7.25·34-s − 211.·35-s − 119.·37-s − 5.92·38-s − 274.·40-s − 201.·41-s + ⋯
L(s)  = 1  − 0.324·2-s − 0.894·4-s − 1.76·5-s + 0.578·7-s + 0.615·8-s + 0.572·10-s − 0.266·11-s + 0.962·13-s − 0.187·14-s + 0.694·16-s + 0.112·17-s + 0.0779·19-s + 1.57·20-s + 0.0863·22-s + 1.74·23-s + 2.10·25-s − 0.312·26-s − 0.517·28-s − 1.20·29-s + 1.02·31-s − 0.840·32-s − 0.0366·34-s − 1.01·35-s − 0.530·37-s − 0.0252·38-s − 1.08·40-s − 0.767·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8300142304\)
\(L(\frac12)\) \(\approx\) \(0.8300142304\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 0.918T + 8T^{2} \)
5 \( 1 + 19.7T + 125T^{2} \)
7 \( 1 - 10.7T + 343T^{2} \)
11 \( 1 + 9.70T + 1.33e3T^{2} \)
13 \( 1 - 45.1T + 2.19e3T^{2} \)
17 \( 1 - 7.90T + 4.91e3T^{2} \)
19 \( 1 - 6.45T + 6.85e3T^{2} \)
23 \( 1 - 192.T + 1.21e4T^{2} \)
29 \( 1 + 188.T + 2.43e4T^{2} \)
31 \( 1 - 176.T + 2.97e4T^{2} \)
37 \( 1 + 119.T + 5.06e4T^{2} \)
41 \( 1 + 201.T + 6.89e4T^{2} \)
43 \( 1 + 402.T + 7.95e4T^{2} \)
47 \( 1 + 446.T + 1.03e5T^{2} \)
53 \( 1 - 470.T + 1.48e5T^{2} \)
59 \( 1 + 667.T + 2.05e5T^{2} \)
61 \( 1 - 564.T + 2.26e5T^{2} \)
67 \( 1 + 737.T + 3.00e5T^{2} \)
71 \( 1 - 1.08e3T + 3.57e5T^{2} \)
73 \( 1 + 539.T + 3.89e5T^{2} \)
79 \( 1 - 803.T + 4.93e5T^{2} \)
83 \( 1 - 1.34e3T + 5.71e5T^{2} \)
89 \( 1 - 21.7T + 7.04e5T^{2} \)
97 \( 1 + 417.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.530559358337419299396858785447, −8.118874899757505068602064711323, −7.47073735198598577662452760068, −6.60927018677932381593740175112, −5.15272453773973349111001002100, −4.75629360651846857459314635371, −3.75081875421580997257972996855, −3.25474467379468009784017601739, −1.41295384913641833122399492307, −0.48334514411029409686000658002, 0.48334514411029409686000658002, 1.41295384913641833122399492307, 3.25474467379468009784017601739, 3.75081875421580997257972996855, 4.75629360651846857459314635371, 5.15272453773973349111001002100, 6.60927018677932381593740175112, 7.47073735198598577662452760068, 8.118874899757505068602064711323, 8.530559358337419299396858785447

Graph of the $Z$-function along the critical line