Properties

Label 2-2151-1.1-c3-0-140
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.40·2-s − 2.20·4-s + 19.1·5-s + 10.9·7-s + 24.5·8-s − 46.2·10-s + 60.8·11-s + 37.3·13-s − 26.4·14-s − 41.5·16-s − 84.1·17-s − 95.5·19-s − 42.2·20-s − 146.·22-s − 27.4·23-s + 243.·25-s − 89.8·26-s − 24.1·28-s + 38.3·29-s + 16.7·31-s − 96.5·32-s + 202.·34-s + 210.·35-s + 125.·37-s + 230.·38-s + 471.·40-s + 336.·41-s + ⋯
L(s)  = 1  − 0.851·2-s − 0.275·4-s + 1.71·5-s + 0.592·7-s + 1.08·8-s − 1.46·10-s + 1.66·11-s + 0.796·13-s − 0.504·14-s − 0.648·16-s − 1.20·17-s − 1.15·19-s − 0.472·20-s − 1.41·22-s − 0.248·23-s + 1.94·25-s − 0.677·26-s − 0.163·28-s + 0.245·29-s + 0.0972·31-s − 0.533·32-s + 1.02·34-s + 1.01·35-s + 0.556·37-s + 0.982·38-s + 1.86·40-s + 1.28·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.366832646\)
\(L(\frac12)\) \(\approx\) \(2.366832646\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 2.40T + 8T^{2} \)
5 \( 1 - 19.1T + 125T^{2} \)
7 \( 1 - 10.9T + 343T^{2} \)
11 \( 1 - 60.8T + 1.33e3T^{2} \)
13 \( 1 - 37.3T + 2.19e3T^{2} \)
17 \( 1 + 84.1T + 4.91e3T^{2} \)
19 \( 1 + 95.5T + 6.85e3T^{2} \)
23 \( 1 + 27.4T + 1.21e4T^{2} \)
29 \( 1 - 38.3T + 2.43e4T^{2} \)
31 \( 1 - 16.7T + 2.97e4T^{2} \)
37 \( 1 - 125.T + 5.06e4T^{2} \)
41 \( 1 - 336.T + 6.89e4T^{2} \)
43 \( 1 - 272.T + 7.95e4T^{2} \)
47 \( 1 - 344.T + 1.03e5T^{2} \)
53 \( 1 - 441.T + 1.48e5T^{2} \)
59 \( 1 + 509.T + 2.05e5T^{2} \)
61 \( 1 - 77.4T + 2.26e5T^{2} \)
67 \( 1 + 369.T + 3.00e5T^{2} \)
71 \( 1 - 358.T + 3.57e5T^{2} \)
73 \( 1 - 1.12e3T + 3.89e5T^{2} \)
79 \( 1 + 814.T + 4.93e5T^{2} \)
83 \( 1 + 1.41e3T + 5.71e5T^{2} \)
89 \( 1 + 69.8T + 7.04e5T^{2} \)
97 \( 1 - 623.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.905966247343545374268709466412, −8.367145173886362474703384059591, −7.14299563863869002461422238103, −6.33710114957596666602888114291, −5.83144342177330741749648937340, −4.59180854653420922028861260844, −4.06229541482991588912062099099, −2.33858704148244527705150365006, −1.62520807558826106426829788599, −0.877305691080237974147493052717, 0.877305691080237974147493052717, 1.62520807558826106426829788599, 2.33858704148244527705150365006, 4.06229541482991588912062099099, 4.59180854653420922028861260844, 5.83144342177330741749648937340, 6.33710114957596666602888114291, 7.14299563863869002461422238103, 8.367145173886362474703384059591, 8.905966247343545374268709466412

Graph of the $Z$-function along the critical line