Properties

Label 2-2151-1.1-c3-0-75
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.32·2-s + 10.7·4-s − 4.62·5-s + 32.0·7-s − 11.8·8-s + 20.0·10-s + 7.45·11-s + 58.3·13-s − 138.·14-s − 34.5·16-s − 66.5·17-s − 121.·19-s − 49.6·20-s − 32.2·22-s − 161.·23-s − 103.·25-s − 252.·26-s + 343.·28-s + 33.6·29-s − 86.2·31-s + 244.·32-s + 288.·34-s − 148.·35-s + 122.·37-s + 528.·38-s + 54.7·40-s − 158.·41-s + ⋯
L(s)  = 1  − 1.53·2-s + 1.34·4-s − 0.413·5-s + 1.72·7-s − 0.523·8-s + 0.632·10-s + 0.204·11-s + 1.24·13-s − 2.64·14-s − 0.540·16-s − 0.949·17-s − 1.47·19-s − 0.554·20-s − 0.312·22-s − 1.46·23-s − 0.829·25-s − 1.90·26-s + 2.32·28-s + 0.215·29-s − 0.499·31-s + 1.35·32-s + 1.45·34-s − 0.714·35-s + 0.546·37-s + 2.25·38-s + 0.216·40-s − 0.603·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9382185980\)
\(L(\frac12)\) \(\approx\) \(0.9382185980\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 4.32T + 8T^{2} \)
5 \( 1 + 4.62T + 125T^{2} \)
7 \( 1 - 32.0T + 343T^{2} \)
11 \( 1 - 7.45T + 1.33e3T^{2} \)
13 \( 1 - 58.3T + 2.19e3T^{2} \)
17 \( 1 + 66.5T + 4.91e3T^{2} \)
19 \( 1 + 121.T + 6.85e3T^{2} \)
23 \( 1 + 161.T + 1.21e4T^{2} \)
29 \( 1 - 33.6T + 2.43e4T^{2} \)
31 \( 1 + 86.2T + 2.97e4T^{2} \)
37 \( 1 - 122.T + 5.06e4T^{2} \)
41 \( 1 + 158.T + 6.89e4T^{2} \)
43 \( 1 - 429.T + 7.95e4T^{2} \)
47 \( 1 + 400.T + 1.03e5T^{2} \)
53 \( 1 - 663.T + 1.48e5T^{2} \)
59 \( 1 + 609.T + 2.05e5T^{2} \)
61 \( 1 - 425.T + 2.26e5T^{2} \)
67 \( 1 - 473.T + 3.00e5T^{2} \)
71 \( 1 - 120.T + 3.57e5T^{2} \)
73 \( 1 + 120.T + 3.89e5T^{2} \)
79 \( 1 + 1.34e3T + 4.93e5T^{2} \)
83 \( 1 - 830.T + 5.71e5T^{2} \)
89 \( 1 - 188.T + 7.04e5T^{2} \)
97 \( 1 - 1.69e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.521888853112878249125772016309, −8.220407876930989122565103754230, −7.60039717936210497206554684398, −6.63912330655830353020648264517, −5.81071295613954832473830459684, −4.47546949768898609331486578037, −4.00686356160437294935826336356, −2.16059879271031816291856873204, −1.69749968715420452008353070017, −0.56745291664274414834599674240, 0.56745291664274414834599674240, 1.69749968715420452008353070017, 2.16059879271031816291856873204, 4.00686356160437294935826336356, 4.47546949768898609331486578037, 5.81071295613954832473830459684, 6.63912330655830353020648264517, 7.60039717936210497206554684398, 8.220407876930989122565103754230, 8.521888853112878249125772016309

Graph of the $Z$-function along the critical line