Properties

Label 2-2151-1.1-c3-0-57
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.21·2-s + 19.2·4-s − 9.35·5-s + 26.3·7-s − 58.6·8-s + 48.8·10-s − 56.1·11-s − 11.5·13-s − 137.·14-s + 152.·16-s + 111.·17-s − 34.4·19-s − 180.·20-s + 293.·22-s + 88.9·23-s − 37.4·25-s + 60.4·26-s + 507.·28-s − 121.·29-s − 35.3·31-s − 325.·32-s − 580.·34-s − 246.·35-s − 12.9·37-s + 180.·38-s + 548.·40-s − 235.·41-s + ⋯
L(s)  = 1  − 1.84·2-s + 2.40·4-s − 0.836·5-s + 1.42·7-s − 2.59·8-s + 1.54·10-s − 1.53·11-s − 0.246·13-s − 2.63·14-s + 2.38·16-s + 1.58·17-s − 0.416·19-s − 2.01·20-s + 2.84·22-s + 0.806·23-s − 0.299·25-s + 0.455·26-s + 3.42·28-s − 0.775·29-s − 0.204·31-s − 1.79·32-s − 2.92·34-s − 1.19·35-s − 0.0577·37-s + 0.768·38-s + 2.16·40-s − 0.898·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5946935050\)
\(L(\frac12)\) \(\approx\) \(0.5946935050\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 5.21T + 8T^{2} \)
5 \( 1 + 9.35T + 125T^{2} \)
7 \( 1 - 26.3T + 343T^{2} \)
11 \( 1 + 56.1T + 1.33e3T^{2} \)
13 \( 1 + 11.5T + 2.19e3T^{2} \)
17 \( 1 - 111.T + 4.91e3T^{2} \)
19 \( 1 + 34.4T + 6.85e3T^{2} \)
23 \( 1 - 88.9T + 1.21e4T^{2} \)
29 \( 1 + 121.T + 2.43e4T^{2} \)
31 \( 1 + 35.3T + 2.97e4T^{2} \)
37 \( 1 + 12.9T + 5.06e4T^{2} \)
41 \( 1 + 235.T + 6.89e4T^{2} \)
43 \( 1 + 280.T + 7.95e4T^{2} \)
47 \( 1 - 491.T + 1.03e5T^{2} \)
53 \( 1 + 475.T + 1.48e5T^{2} \)
59 \( 1 - 292.T + 2.05e5T^{2} \)
61 \( 1 + 544.T + 2.26e5T^{2} \)
67 \( 1 - 763.T + 3.00e5T^{2} \)
71 \( 1 - 107.T + 3.57e5T^{2} \)
73 \( 1 - 807.T + 3.89e5T^{2} \)
79 \( 1 - 785.T + 4.93e5T^{2} \)
83 \( 1 + 69.6T + 5.71e5T^{2} \)
89 \( 1 + 462.T + 7.04e5T^{2} \)
97 \( 1 - 563.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.465064301813114476826995099922, −7.911658317605536451329419143535, −7.73634588493479782375548223664, −6.94472884725677925953499732534, −5.60792389930743832689664984212, −4.92168659692097493708393312005, −3.48693182908891967151833748990, −2.41760779010653576493314082987, −1.51527521035106643332460947093, −0.47711256412682749738711108752, 0.47711256412682749738711108752, 1.51527521035106643332460947093, 2.41760779010653576493314082987, 3.48693182908891967151833748990, 4.92168659692097493708393312005, 5.60792389930743832689664984212, 6.94472884725677925953499732534, 7.73634588493479782375548223664, 7.911658317605536451329419143535, 8.465064301813114476826995099922

Graph of the $Z$-function along the critical line