Properties

Label 2-2151-1.1-c3-0-200
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.82·2-s + 15.2·4-s + 17.0·5-s − 0.894·7-s + 34.8·8-s + 82.0·10-s + 12.8·11-s − 55.2·13-s − 4.31·14-s + 46.2·16-s − 45.7·17-s + 57.6·19-s + 259.·20-s + 61.8·22-s + 161.·23-s + 164.·25-s − 266.·26-s − 13.6·28-s + 278.·29-s − 207.·31-s − 56.1·32-s − 220.·34-s − 15.2·35-s + 170.·37-s + 278.·38-s + 593.·40-s + 253.·41-s + ⋯
L(s)  = 1  + 1.70·2-s + 1.90·4-s + 1.52·5-s − 0.0482·7-s + 1.54·8-s + 2.59·10-s + 0.351·11-s − 1.17·13-s − 0.0822·14-s + 0.722·16-s − 0.652·17-s + 0.696·19-s + 2.90·20-s + 0.599·22-s + 1.46·23-s + 1.31·25-s − 2.01·26-s − 0.0919·28-s + 1.78·29-s − 1.20·31-s − 0.310·32-s − 1.11·34-s − 0.0735·35-s + 0.756·37-s + 1.18·38-s + 2.34·40-s + 0.963·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(9.363349326\)
\(L(\frac12)\) \(\approx\) \(9.363349326\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 4.82T + 8T^{2} \)
5 \( 1 - 17.0T + 125T^{2} \)
7 \( 1 + 0.894T + 343T^{2} \)
11 \( 1 - 12.8T + 1.33e3T^{2} \)
13 \( 1 + 55.2T + 2.19e3T^{2} \)
17 \( 1 + 45.7T + 4.91e3T^{2} \)
19 \( 1 - 57.6T + 6.85e3T^{2} \)
23 \( 1 - 161.T + 1.21e4T^{2} \)
29 \( 1 - 278.T + 2.43e4T^{2} \)
31 \( 1 + 207.T + 2.97e4T^{2} \)
37 \( 1 - 170.T + 5.06e4T^{2} \)
41 \( 1 - 253.T + 6.89e4T^{2} \)
43 \( 1 - 401.T + 7.95e4T^{2} \)
47 \( 1 - 339.T + 1.03e5T^{2} \)
53 \( 1 - 623.T + 1.48e5T^{2} \)
59 \( 1 - 588.T + 2.05e5T^{2} \)
61 \( 1 + 397.T + 2.26e5T^{2} \)
67 \( 1 + 765.T + 3.00e5T^{2} \)
71 \( 1 - 274.T + 3.57e5T^{2} \)
73 \( 1 - 1.18e3T + 3.89e5T^{2} \)
79 \( 1 + 650.T + 4.93e5T^{2} \)
83 \( 1 - 526.T + 5.71e5T^{2} \)
89 \( 1 - 1.21e3T + 7.04e5T^{2} \)
97 \( 1 + 1.60e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.014883523827764715003529085944, −7.48344033716028317697060839548, −6.80431267575864074968079650027, −6.16541059097590524769253982792, −5.36603668646724817455069012261, −4.91141083682265456164221635667, −3.98402607329278811125633361458, −2.67740866260769056119044815279, −2.44554149372838682616644532720, −1.13663035494224112481787012993, 1.13663035494224112481787012993, 2.44554149372838682616644532720, 2.67740866260769056119044815279, 3.98402607329278811125633361458, 4.91141083682265456164221635667, 5.36603668646724817455069012261, 6.16541059097590524769253982792, 6.80431267575864074968079650027, 7.48344033716028317697060839548, 9.014883523827764715003529085944

Graph of the $Z$-function along the critical line